Vai al contenuto principale della pagina

Metal oxide nanoparticles . Volume 1 & 2 : formation, functional properties, and interfaces / / edited by Oliver Diwald, Thomas Berger



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Metal oxide nanoparticles . Volume 1 & 2 : formation, functional properties, and interfaces / / edited by Oliver Diwald, Thomas Berger Visualizza cluster
Pubblicazione: Hoboken, New Jersey ; ; Chichester, England : , : John Wiley & Sons Ltd., , [2022]
©2022
Descrizione fisica: 1 online resource (894 pages)
Disciplina: 579.24
Soggetto topico: Metal nanoparticles
Persona (resp. second.): DiwaldOliver
BergerThomas
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Part I Introduction -- Chapter 1 Metal Oxides and Specific Functional Properties at the Nanoscale -- 1.1 A Cross‐Sectional Topic in Materials Science and Technology -- 1.2 Metal Oxides: Bonding and Characteristic Features -- 1.3 Regimes of Size‐Dependent Property Changes and Confinement Effects -- 1.4 Distribution of Nanoparticle Properties -- 1.5 Structure and Morphology -- 1.5.1 Confinement and Structural Disorder -- 1.5.2 Surface Free Energy Contributions and Metastability -- 1.5.3 Shape -- 1.6 Electronic Structure and Defects -- 1.6.1 Size‐Dependent Defect Formation Energies and Their Impact on Surface Reactivity -- 1.7 Surface Chemistry -- 1.8 Metal Oxide Nanoparticle Ensembles as Dynamic Systems -- 1.9 Organization of This Book -- References -- Chapter 2 Application of Metal Oxide Nanoparticles and their Economic Impact -- 2.1 Introduction -- 2.1.1 Nanomaterials and Nanoobjects -- 2.1.2 Selection of Metal Oxide Nanoparticles -- 2.2 Scientific and Patent Landscape -- 2.3 Types of Metal Oxide Nanoparticles, Properties, and Application Overview -- 2.4 Use Forms of Metal Oxide Nanoparticles and Related Processing -- 2.4.1 Metal Oxide Nanoparticle Powders for Ceramics -- 2.4.2 Metal Oxide Nanoparticle Dispersions -- 2.4.3 Composites -- 2.4.3.1 Polymer Based Composites (Bulk and Coatings) -- 2.4.3.2 Metal Reinforcement -- 2.4.4 Combination with Powders of Micrometer Sized Particles -- 2.5 Application Fields of Metal Oxide Nanoparticles -- 2.5.1 Agriculture -- 2.5.2 Sensors and Analytics -- 2.5.3 Automotive -- 2.5.4 Biomedicine/Dental -- 2.5.4.1 Therapy -- 2.5.5 Catalysis -- 2.5.6 Consumer Products: Cosmetics, Food, Textiles -- 2.5.7 Construction -- 2.5.8 Electronics and Magnetics -- 2.5.9 Energy -- 2.5.10 Environment, Resource Efficiency, Processing.
2.5.11 Oil Field Chemicals and Petroleum Industries -- 2.5.12 Optics/Optoelectronics and Photonics -- 2.6 Economic Impact -- 2.7 Conclusions and Outlook -- Abbreviations -- References -- Part II Particle Synthesis: Principles of Selected Bottom‐up Strategies -- Chapter 3 Nanoparticle Synthesis in the Gas Phase -- 3.1 Introduction -- 3.2 Some Key Issues of Particle Formation in the Gas Phase and in Liquids -- 3.3 Gas Phase Chemistry, Particle Dynamics, and Agglomeration -- 3.4 Gas‐to‐Particle Conversion -- 3.4.1 Physical Processes -- 3.4.2 Chemical Processes -- 3.5 Particle‐to‐Particle Conversion -- 3.5.1 Approaches and Precursors -- 3.5.2 Particle Formation -- 3.5.3 Experimental Realization -- 3.5.4 Spray Pyrolysis and Flame‐Assisted Spray Pyrolysis -- 3.6 Gas Phase Functionalization Approaches -- References -- Chapter 4 Liquid‐Phase Synthesis of Metal Oxide Nanoparticles -- 4.1 Introduction -- 4.2 General Aspects -- 4.2.1 Liquid‐Phase Chemistry -- 4.2.2 Nucleation, Growth, and Crystallization -- 4.3 Synthetic Procedures -- 4.3.1 (Co)Precipitation -- 4.3.2 Sol-Gel Processing -- 4.3.3 Polyol‐Mediated Synthesis/Pechini Method -- 4.3.4 Hot‐Injection Method -- 4.3.5 Hydrothermal/Solvothermal Processing -- 4.3.6 Microwave‐Assisted Synthesis -- 4.3.7 Sonication‐Assisted Synthesis -- 4.3.8 Synthesis in Confined Spaces -- 4.4 Summary -- References -- Chapter 5 Controlled Impurity Admixture: From Doped Systems to Composites -- 5.1 Introduction -- 5.2 Liquid‐Phase Synthesis of Doped Metal Oxide Nanoparticles -- 5.3 Gas‐Phase Synthesis of Doped Metal Oxide Nanoparticles -- 5.4 Solid‐State Synthesis of Doped Metal Oxide Nanoparticles -- 5.5 Phase Segregation: Formation of Heterostructures -- 5.6 Core/Shell and Heteromultimers -- 5.7 Summary and Conclusions -- References -- Part III Nanoparticle Formulation: A Selection of Processing and Application Routes.
Chapter 6 Colloidal Processing -- 6.1 Towards Complex Shaped and Compositionally Well‐Defined Ceramics: The Need for Colloidal Processing -- 6.2 Colloidal Processing Fundamentals -- 6.2.1 Interparticle Forces -- 6.2.1.1 Electric Double Layer Forces -- 6.2.1.2 Polymer‐Induced Forces -- 6.2.2 Forming and Consolidation Techniques -- 6.2.2.1 Drained Casting Techniques -- 6.2.2.2 Tape‐Casting Techniques -- 6.2.2.3 Constant Volume Techniques -- 6.2.2.4 Drying and Cracking -- 6.3 Rheology of Suspensions -- 6.4 Electrostatic Heteroaggregation of Metal Oxide Nanoparticles -- 6.4.1 Modification of Colloidal Stability by Heteroaggregation -- 6.4.2 Structure Evolution upon Heteroaggregation -- 6.4.3 Rheological Properties of Heterocolloids -- 6.4.4 Functional Properties of Heteroaggregates -- 6.5 Ice‐Templating‐Enabled Porous Ceramic Structures: Impact of Nanoparticles -- 6.5.1 Ice‐Templating of Colloidal Particles -- 6.5.2 Capabilities of Metal Oxide Nanoparticles in Ice‐Templating -- 6.5.2.1 Optimization of the Mechanical Properties of Green Bodies and Sintered Parts -- 6.5.2.2 Hierarchical Porosity and High Surface Area Materials -- 6.5.2.3 Triple Phase Boundaries Between Percolating Solid Networks and a Hierarchical Pore System -- 6.6 From Colloidal Processing to Nanoparticle Assembly -- Nomenclature -- List of Abbreviations -- References -- Chapter 7 Fabrication of Metal Oxide Nanostructures by Materials Printing -- 7.1 Introduction -- 7.2 Traditional Coating and Printing Techniques -- 7.3 Inkjet Printing -- 7.3.1 A Brief Introduction into IJP Technology and the Process Scheme -- 7.3.2 Functional Ink Formulation Issues -- 7.3.3 Drop Generation -- 7.3.4 Drop Interaction with the Substrate -- 7.3.5 Drop Drying and Pattern Formation -- 7.3.6 Printing Quality -- 7.3.7 Equipment and Printing Devices -- 7.4 Printing of Metal Oxide Structures: The Materials Aspect.
7.4.1 Insulating Metal Oxides -- 7.4.2 Semiconducting Metal Oxides -- 7.4.3 Conducting Metal Oxides -- 7.5 Examples for Complex Printed Functional Structures: The Device Aspect -- 7.5.1 Printed Photoelectrochemical Cell -- 7.5.2 Flexible pH Sensors by Large Scale Layer‐by‐layer Inkjet Printing -- 7.6 Conclusions and Outlook -- References -- Chapter 8 Nanoscale Sintering -- 8.1 Background -- 8.2 Challenges and New Aspects of Nanoparticle Material Sintering -- 8.3 Questionable Nature of Existing Sintering Theories -- 8.4 3D Reconstruction -- 8.4.1 Focused Ion Beam Cross‐Sectioning and SEM Imaging -- 8.4.2 X‐ray Microtomography -- 8.5 Functions of Pores -- 8.6 Sintering of Small Features -- 8.6.1 New Sintering Questions -- 8.6.2 Role of Pore Number in Small Feature Sintering -- 8.6.3 Grain Boundary Diffusion vs. Grain Boundary Migration in Small Feature Sintering -- 8.6.4 Ceramic Type Effect on Small Feature Sintering -- 8.6.5 Atmosphere Effect on Small Feature Sintering -- 8.7 Summary -- Acknowledgment -- References -- Part IV Metal Oxide Nanoparticle Characterization at Different Length Scales -- Chapter 9 Structure: Scattering Techniques -- 9.1 Introduction -- 9.1.1 Scattering and Diffraction -- 9.1.2 What to Learn from a Diffraction Experiment? -- 9.2 Theoretical Background -- 9.2.1 Crystal Lattice, Planes, and Bragg's Law -- 9.2.1.1 Crystal Planes and Interplanar Distance -- 9.2.1.2 The Reciprocal Lattice -- 9.2.1.3 Bragg's Law -- 9.2.2 The Intensity of a Bragg Peak -- 9.2.3 The Profile of a Bragg Peak -- 9.2.3.1 Instrumental Broadening -- 9.2.3.2 Sample Broadening -- 9.2.3.3 Analytical Description of Peak Shapes -- 9.3 Experimental Setup -- 9.3.1 Single vs. Polycrystalline Samples -- 9.3.2 Powder Diffraction Methods -- 9.3.2.1 Reflection Geometry -- 9.3.2.2 Transmission Geometry -- 9.3.2.3 Grazing Incident Diffraction (GID).
9.3.2.4 Sample Preparation -- 9.4 Some Selected Applications -- 9.4.1 Qualitative Phase Analysis -- 9.4.2 Quantitative Phase Analysis - The Rietveld Method -- 9.4.3 Microstructure Analysis: Size and Strain -- 9.5 X‐ray Diffraction on Magnetite Nanoparticles -- 9.6 Conclusion -- Nomenclature -- List of Abbreviations -- References -- Chapter 10 Morphology, Structure, and Chemical Composition: Transmission Electron Microscopy and Elemental Analysis -- 10.1 Size, Shape, and Composition of Oxide Nanoparticles -- 10.2 Interaction of the Incident Electrons with a Specimen -- 10.3 The Transmission Electron Microscope -- 10.3.1 Microscope Design and Operation Modes -- 10.3.2 Contrast Type and Image Formation -- 10.3.3 Resolution Limits of TEM Images -- 10.4 Imaging and Analysis of Morphology -- 10.4.1 Sample Preparation -- 10.4.2 Shape Retrieving -- 10.4.2.1 Aligned Nanocrystals -- 10.4.2.2 Randomly Oriented Nanocrystals -- 10.4.3 Particle Size Determination -- 10.5 Crystallographic Phase Identification - Electron Diffraction -- 10.5.1 Bragg Condition - Kinematical and Dynamical Diffraction -- 10.5.2 Selected Area Electron Diffraction (SAED) -- 10.5.3 Nanodiffraction -- 10.6 Chemical Composition Mapping - EDX and EELS Nanospectroscopy -- 10.6.1 Correlating Image with Spectroscopic EDX and EELS Information - Data Cubes -- 10.6.2 Composition Mapping with EDX Spectroscopy -- 10.6.3 Chemical State Imaging with EELS Spectroscopy -- Nomenclature -- List of Abbreviations -- References -- Chapter 11 Electronic and Chemical Properties: X‐Ray Absorption and Photoemission -- 11.1 Introduction and Scope of the Chapter -- 11.2 Basics of X‐rays - Matter Interaction -- 11.3 X‐Ray Photoelectron Spectroscopy (XPS) -- 11.3.1 Theoretical Background -- 11.3.2 Features and Analysis of X‐ray Photoelectron Spectra.
11.3.3 XPS Investigation of Metal Oxide Nanoparticles and Metal Oxide Colloidal Suspensions.
Sommario/riassunto: "Metal oxide nanoparticles play a decisive role in numerous natural and technological processes ranging from mineral transformation, catalysis, photocatalysis, electronics, and sensor technology. Continuously increasing quantities of metal oxide nanoparticle powders are used in very diverse areas such as engineering, electronics, energy technology, and electronics. As such, they have by far the greatest market relevance among the currently available nanomaterials. Defects, surfaces and interfaces in metal oxide nanoparticles dominate most physico-chemical processes occurring within this class of functional materials. As a result, interface engineering, i.e. the controlled modification of composition, size and structure, has become a key tool to tune the function and stability of nanostructures, but also to induce complex assembly at the meso- and the microscale, providing access to a range of new materials"--
Titolo autorizzato: Metal oxide nanoparticles  Visualizza cluster
ISBN: 1-119-43676-1
1-119-43678-8
1-119-43679-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910831076903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui