Vai al contenuto principale della pagina
Titolo: | Printable mesoscopic perovskite solar cells / / edited by Hongwei Han [and three others] |
Pubblicazione: | Weinheim, Germany : , : WILEY-VCH GmbH, , [2023] |
©2023 | |
Descrizione fisica: | 1 online resource (303 pages) |
Disciplina: | 410.5 |
Soggetto topico: | Perovskite materials |
Perovskite solar cells | |
Solar cells | |
Persona (resp. second.): | HanHongwei |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | Cover -- Title Page -- Copyright -- Contents -- Biography -- Preface -- Chapter 1 Background and Basic Knowledge of Perovskite Solar Cells -- 1.1 Background -- 1.2 The Principle of Solar Cells -- 1.2.1 Silicon Solar Cells -- 1.2.2 Dye‐sensitized Solar Cells -- 1.2.3 Organic Solar Cells -- 1.2.4 Perovskite Solar Cells -- 1.3 The Typical Structures of PSC -- 1.3.1 Mesoscopic Structure -- 1.3.2 Triple‐mesoscopic Layer Structure -- 1.3.3 Regular Planar n‐i‐p Structure -- 1.3.4 Inverted Planar p‐i‐n Structure -- References -- Chapter 2 Characterization Methods and Technologies for Halide Perovskite Materials and Devices -- 2.1 Introduction -- 2.2 Printing Layer Quality -- 2.2.1 Thickness Measurement -- 2.2.1.1 Profilometry -- 2.2.1.2 SEM -- 2.2.1.3 Ellipsometry -- 2.2.2 Porosity Estimation -- 2.2.2.1 Gas Adsorption (BET Method) -- 2.2.2.2 SEM/FIB 3D Nanotomography -- 2.2.3 Sheet Resistance -- 2.2.3.1 Four‐point Probe Measurement -- 2.2.4 Shunt Resistance of Unfilled Cell -- 2.3 Material and Crystal Properties -- 2.3.1 X‐Ray Diffraction (XRD) Analysis -- 2.3.2 UV-Vis-NIR Spectroscopy -- 2.3.3 Raman Shift Spectroscopy -- 2.3.4 Scanning Electron Microscopy (SEM) and Energy Dispersive X‐Ray Spectroscopy (EDX) -- 2.3.4.1 Scanning Electron Microscopy (SEM) -- 2.3.4.2 Energy Dispersive X‐Ray Spectroscopy (EDX) -- 2.3.5 Atomic Force Microscopy (AFM) -- 2.3.6 Contact Angle Measurement -- 2.4 Spatially Resolved Steady‐state Photophysical Methods -- 2.4.1 Photoluminescence Microscopy Imaging -- 2.4.2 Microscopic Photoluminescence Spectroscopy Mapping -- 2.4.3 Electroluminescence Imaging -- 2.4.4 Bias‐dependent Photoluminescence Imaging -- 2.4.5 Real‐time Photoluminescence Measurement -- 2.4.6 Dark Lock‐in Thermography (DLIT) -- 2.4.7 Light‐Beam‐Induced Current (LBIC) -- 2.5 Transient Optoelectronic Methods. |
2.5.1 Intensity‐modulated Photocurrent/Photovoltage Spectroscopy (IMPS/IMVS) -- 2.5.2 Transient Photocurrent/Photovoltage (TPC/TPV) -- 2.5.3 Open‐circuit Voltage Decay (OCVD) Analysis for Shunt Detection -- 2.5.4 Transient Absorption Spectroscopy (TAS) -- 2.5.5 Time‐resolved Photoluminescence (TRPL) -- 2.5.5.1 Typical Setup: Pulsed (Transient) Excitation -- 2.5.5.2 Alternative Setup: Steady‐state Excitation -- 2.5.5.3 Some Notes on Sample Preparation -- 2.5.6 Note on the Extension to Spatially Resolved Measurements -- 2.6 I-V Performance: Transient and Steady State -- 2.6.1 I-V Characterization -- 2.6.2 I-V Hysteresis -- 2.6.3 Stabilized Efficiency Measurement -- 2.6.4 Spectral Response/External Quantum Efficiency (SR/EQE) -- 2.6.5 Voc vs. Light Intensity Measurement -- 2.6.6 Effect of Parallel and Series Resistance Rp -- 2.6.7 Effect of Saturation Current J01 and J02 -- 2.6.8 Certification of PV Performance -- 2.6.9 Long‐term Stability Measurement -- References -- Chapter 3 Printable Processing Technologies for Perovskite Solar Cells -- 3.1 Introduction -- 3.2 Solution‐Based Technologies -- 3.2.1 Spin Coating -- 3.2.2 Blade Coating -- 3.2.3 Slot‐Die Coating -- 3.2.4 Bar Coating -- 3.2.5 Spray Coating -- 3.2.6 Inkjet Printing -- 3.2.7 Screen Printing -- 3.2.8 Chemical Bath Deposition -- 3.2.9 Soft‐Cover Deposition -- 3.2.10 Brush Painting -- 3.3 Conclusion and Outlook -- References -- Chapter 4 Mesoscopic Anodes and Cathodes for Printable Perovskite Solar Cells -- 4.1 Introduction -- 4.2 Fabrication Methods -- 4.3 Comact Layer (TiO2) -- 4.4 Mesoporous Anodes (n‐Type Semiconductor: TiO2, etc.) -- 4.5 Mesoporous Cathodes (NiO and Co3O4) -- 4.6 Back‐Contact Porous Carbon -- 4.7 Photovoltaic Measurements -- 4.8 Conclusion -- References -- Chapter 5 Insulating Layers for Printable Mesoscopic Perovskite Solar Cells -- 5.1 Introduction. | |
5.2 ZrO2‐Insulating Mesoscopic Layers -- 5.3 Al2O3‐Insulating Mesoscopic Layers -- 5.4 SiO2‐Insulating Mesoscopic Layers -- 5.5 Multilayer Insulating Mesoscopic Layers -- 5.5.1 Al2O3 + ZrO2 -- 5.5.2 Al2O3 + NiO -- 5.5.3 ZrO2 + NiO -- 5.6 Conclusion and Perspective -- References -- Chapter 6 Perovskite Materials and Perovskite Solar Cells -- 6.1 Perovskite Materials -- 6.1.1 3D Halide Perovskites -- 6.1.2 2D Halide Perovskites -- 6.1.3 Synthesis of Halide Perovskites -- 6.2 Compositional and Interfacial Engineering of Perovskite Solar Cells -- 6.2.1 Solvent Engineering -- 6.2.2 Cation Optimization -- 6.2.3 Halide Optimization -- 6.2.4 Stoichiometric and Nonstoichiometric Compositions -- 6.2.5 The Influence of Inorganic Cations on the Formation of Different Phases -- 6.2.6 Halide Segregation -- 6.2.7 Interface Engineering -- 6.2.8 Charge Transfer Dynamics -- References -- Chapter 7 The Efficiency Progress in Printable Mesoscopic Perovskite Solar Cells -- 7.1 Introduction -- 7.2 Solvent Engineering and Annealing -- 7.2.1 Solvent Engineering -- 7.2.2 Solvent Annealing -- 7.3 Composition Engineering -- 7.3.1 The A‐Site Cation -- 7.3.2 The B‐Site Cation and X‐Site Anion -- 7.4 Additive Engineering -- 7.4.1 Functional Molecular Additives -- 7.4.2 Other Additives -- 7.5 Interfaces Engineering -- 7.5.1 Interface of Perovskite and Electron Transport Materials -- 7.5.2 Interface of Perovskite and Counter Electrode -- 7.6 Conclusion and Outlook -- References -- Chapter 8 Stability Issues and Solutions for Perovskite Solar Cells -- 8.1 Substrate -- 8.2 Electron Transport Layer -- 8.3 Hole Transport Layer -- 8.4 Back Electrode -- 8.5 Encapsulant -- 8.6 Halide Perovskite Light Absorbing Layer -- 8.6.1 Thermal Stability -- 8.6.2 Phase Stability -- 8.6.3 Ambient Stability -- 8.6.4 Operational Stability -- 8.6.4.1 Degradation Pathways -- 8.6.4.2 Heat Management. | |
8.6.4.3 Grain Boundary Modification -- 8.6.4.4 Interface Strengthening -- 8.6.4.5 Defect Degeneration -- 8.6.4.6 Reverse‐bias Voltages -- 8.7 Summary -- References -- Chapter 9 Manufacture, Modules, and Applications -- 9.1 Introduction -- 9.2 Manufacture -- 9.2.1 Screen Printing -- 9.2.1.1 Ink Properties -- 9.2.1.2 Mesh Characteristics -- 9.2.1.3 Gap Between Screen and Substrate -- 9.2.1.4 A Case Study: TiO2 -- 9.2.2 Deposition of the Compact TiO2 -- 9.2.3 Deposition of the Mesoscopic Layers -- 9.2.4 Deposition of Additional Interlayers -- 9.2.5 Infiltration of Perovskite -- 9.3 Modules -- 9.3.1 Designs -- 9.3.2 Optimization -- 9.3.2.1 A Simplified Approach -- 9.3.2.2 2D Poisson's Equation -- 9.3.2.3 Carbon Cells and Contact Resistance -- 9.4 Applications -- 9.4.1 Modules Performance -- 9.4.2 Encapsulation and Outdoor Performance -- 9.4.3 Indoor Applications -- 9.5 Summary -- References -- Chapter 10 Perspective -- 10.1 Commercializing -- 10.2 Exceeding SQ Limit -- 10.3 Efficiency Breaking Out of SQ Limit -- References -- Index -- EULA. | |
Titolo autorizzato: | Printable mesoscopic perovskite solar cells |
ISBN: | 3-527-83429-X |
3-527-83427-3 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910829836003321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |