Vai al contenuto principale della pagina

Aerospace polymeric materials / / edited by Inamuddin Tariq Altalhi and Sayed Mohammed Adnan



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Aerospace polymeric materials / / edited by Inamuddin Tariq Altalhi and Sayed Mohammed Adnan Visualizza cluster
Pubblicazione: Hoboken, NJ : , : John Wiley & Sons, Inc., , 2022
Descrizione fisica: 1 online resource (281 pages)
Disciplina: 629.1
Soggetto topico: Aerospace engineering - Materials
Polymeric composites
Persona (resp. second.): AltalhiInamuddin Tariq
AdnanSayed Mohammed
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Tuning Aerogel Properties for Aerospace Applications -- 1.1 Introduction -- 1.2 Synthesis -- 1.3 Aerospace Missions -- 1.3.1 Stardust Mission -- 1.3.2 MARS Pathfinder Mission -- 1.3.3 Hypersonic Inflatable Aerodynamic Decelerator -- 1.3.4 Mars Science Laboratory -- 1.3.5 Cryogenic Fluid Containment -- 1.4 Property Tuning of Aerogels -- 1.4.1 During Synthesis -- 1.4.2 Post-Synthesis -- 1.4.3 Aerogel Composites -- 1.5 Tuning Properties for Aerospace Applications -- 1.5.1 Thermal Conductivity -- 1.5.1.1 Minimizing Solid Conductivity -- 1.5.1.2 Modification of IR Absorption Properties -- 1.5.1.3 Minimizing Gaseous Conductivity -- 1.5.2 Mechanical Property -- 1.5.3 Optical Transmittance -- 1.6 Conclusion and Future Prospects -- Acknowledgments -- References -- 2 Welding of Polymeric Materials in Aircrafts -- 2.1 Introduction -- 2.2 Major Polymer Welding Methods Applied in Aviation -- 2.2.1 Hot Gas Welding -- 2.2.2 Hot Plate Welding -- 2.2.3 Extrusion Welding -- 2.2.4 Infrared Welding -- 2.2.5 Laser Welding -- 2.2.6 Vibration Welding -- 2.2.7 Friction Welding -- 2.2.8 Friction Stir Welding -- 2.2.9 Friction Stir Spot Welding -- 2.2.10 Ultrasonic Welding -- 2.2.11 Resistance Implant Welding -- 2.2.12 Induction Welding -- 2.2.13 Dielectric Welding -- 2.2.14 Microwave Welding -- 2.3 Conclusion -- References -- 3 Carbon Nanostructures for Reinforcement of Polymers in Mechanical and Aerospace Engineering -- 3.1 Introduction -- 3.2 Common Carbon Nanoparticles -- 3.2.1 Graphene -- 3.2.2 Carbon Nanotubes -- 3.2.3 Fullerenes -- 3.3 Modeling and Mechanical Properties of Carbon Nanoparticles -- 3.4 Modeling of Carbon Nanoparticles Reinforced Polymers -- 3.5 Preparation of Carbon Nanoparticles Reinforced Polymers.
3.6 Mechanical Properties of Carbon Nanoparticles Reinforced Polymers -- 3.6.1 Graphene Family/Polymer -- 3.6.1.1 Graphite Nanosheets/Polymer -- 3.6.1.2 Graphene and Graphene Oxide/Polymer -- 3.6.2 CNT/Polymer -- 3.6.3 Fullerene/Polymer -- 3.7 Application of Carbon Nanoparticles Reinforced Polymers in Mechanical and Aerospace Engineering -- 3.8 Conclusions -- References -- 4 Self-Healing Carbon Fiber-Reinforced Polymers for Aerospace Applications -- 4.1 General Principle of Self-Healing Composites -- 4.1.1 Extrinsic Healing -- 4.1.2 Intrinsic Self-Healing -- 4.2 Self-Healing Carbon Fiber-Reinforced Polymers -- 4.2.1 Carbon Fiber-Reinforced Polymers (CFRPs) -- 4.2.2 Healing Efficiency -- 4.3 Manufacturing Techniques -- 4.4 Recent Development of Carbon Fiber-Reinforced Polymers in Aerospace Applications -- 4.4.1 Engines -- 4.4.2 Fuselage -- 4.4.3 Aerostructure -- 4.4.4 Coating -- 4.4.5 Other Application -- 4.5 Disposal and Recycling of Self-Healing Carbon Fiber-Reinforced Polymers -- 4.6 Conclusion and Future Challenges -- References -- 5 Advanced Polymeric Materials for Aerospace Applications -- 5.1 Introduction -- 5.2 Types of Advanced Polymers -- 5.2.1 Copolymers -- 5.2.2 Polymer Matrix Composite -- 5.2.3 Properties of Reinforced Materials -- 5.3 Thermoplastics -- 5.4 Thermosetting -- 5.5 Polymeric Nanocomposites -- 5.6 Glass Fiber -- 5.7 Polycarbonates -- 5.8 Applications -- 5.9 Conclusion -- References -- 6 Self-Healing Composite Materials -- 6.1 Introduction -- 6.2 Self-Healing Mechanism -- 6.3 Types of Self-Healing Coatings -- 6.3.1 Passive Self-Healing for External Techniques -- 6.3.1.1 Microencapsulation -- 6.3.1.2 Hollow-Fiber Approach -- 6.3.1.3 Microvascular Network -- 6.3.2 Active Self-Healing Methodology Based on Intrinsic -- 6.3.2.1 Shape Memory Polymers (SMPs) -- 6.3.2.2 Reversible Polymers.
6.4 Research Areas of Self-Healing Materials -- 6.5 Aerospace Applications of Polymer Composite Self-Healing Materials -- 6.5.1 Aircraft Fuselage and Structure -- 6.5.2 Coatings -- 6.6 Conclusion -- References -- 7 Conducting Polymer Composites for Antistatic Application in Aerospace -- 7.1 Introduction -- 7.2 Conducting Polymer Composites (CPCs) for Antistatic Application in Aerospace -- 7.3 Conducting Polymer Nanocomposites (CPNCs) for Antistatic Application in Aerospace -- 7.4 Conclusions -- References -- 8 Electroactive Polymeric Shape Memory Composites for Aerospace Application -- 8.1 Introduction -- 8.1.1 Electroactive Polymer -- 8.1.1.1 Electronic EAPs -- 8.1.1.2 Dielectric Elastomer Actuators (DEAs) -- 8.1.1.3 Piezoelectric Polymer -- 8.1.1.4 Ferroelectric EAPs -- 8.1.2 Ionic Polymers -- 8.1.2.1 Carbon Nanotube (CNT) Actuators -- 8.1.2.2 Ionic Polymer Metal Composites -- 8.1.2.3 Carbon Nanotubes -- 8.1.2.4 Ionic Polymer Gels -- 8.2 Shape-Memory Polymers (SMPs) -- 8.2.1 Properties of Shape Memory Polymers -- 8.2.1.1 Classification of SMPs by Stimulus Response -- 8.2.2 Shape Memory Polymer Composites -- 8.2.3 Electroactive Shape Memory Polymers -- 8.2.4 Applications of Electroactive Shape Memory Polymer Composites in Aerospace -- 8.2.5 Hybrid Electroactive Morphing Wings -- 8.2.6 Paper-Thin CNT -- 8.2.7 SMPC Hinges -- 8.2.8 SMPC Booms -- 8.2.9 Foldable SMPC Truss Booms -- 8.2.9.1 Coilable SMPC Truss Booms -- 8.2.9.2 SMPC STEM Booms -- 8.2.10 SMPC Reflector Antennas -- 8.2.11 Expandable Lunar Habitat -- 8.2.12 Super Wire -- References -- 9 Polymer Nanocomposite Dielectrics for High-Temperature Applications -- 9.1 Introduction -- 9.1.1 Polymer Nanocomposite Dielectrics (PNCD) -- 9.2 Crucial Factor in Framing the High-Temperature Polymer Nanocomposite Dielectric Materials -- 9.2.1 Dielectric Permittivity -- 9.2.2 Thermal Stability.
9.3 Application of Polymer Nanocomposite Dielectric at Elevated Temperature and Their Progress -- 9.4 Conclusion -- References -- 10 Self-Healable Conductive and Polymeric Composite Materials -- 10.1 Introduction -- 10.2 Self-Healing Materials -- 10.2.1 Self-Healing Polymers -- 10.2.2 Self-Healing Polymer Composite Materials -- 10.3 Mechanically-Induced Self-Healing Materials -- 10.3.1 Self-Healing Induction Grounded on Gel -- 10.3.2 Self-Healing Induction Based on Crystals -- 10.3.3 Self-Healing Induction Based on Corrosion Inhibitors -- 10.4 Self-Healing Elastomers and Reversible Materials -- 10.5 Self-Healing Conductive Materials -- 10.5.1 Self-Healing Conductive Polymers -- 10.5.2 Self-Healing Conductive Capsules -- 10.5.3 Self-Healing Conductive Liquids -- 10.5.4 Self-Healing Conductive Composites -- 10.5.5 Self-Healing Conductive Coating -- 10.6 Conclusion and Future Prospects -- References -- Index -- EULA.
Titolo autorizzato: Aerospace polymeric materials  Visualizza cluster
ISBN: 1-119-90526-5
1-119-90525-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910829825803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui