Vai al contenuto principale della pagina

An introduction to stochastic filtering theory [[electronic resource] /] / Jie Xiong



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Xiong Jie Visualizza persona
Titolo: An introduction to stochastic filtering theory [[electronic resource] /] / Jie Xiong Visualizza cluster
Pubblicazione: Oxford ; ; New York, : Oxford University Press, 2008
Descrizione fisica: 1 online resource (285 p.)
Disciplina: 519.2/3
Soggetto topico: Stochastic processes
Filters (Mathematics)
Prediction theory
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references (p. [255]-265) and index.
Nota di contenuto: Contents; 1 Introduction; 2 Brownian motion and martingales; 3 Stochastic integrals and Itô's formula; 4 Stochastic differential equations; 5 Filtering model and Kallianpur-Striebel formula; 6 Uniqueness of the solution for Zakai's equation; 7 Uniqueness of the solution for the filtering equation; 8 Numerical methods; 9 Linear filtering; 10 Stability of non-linear filtering; 11 Singular filtering; Bibliography; List of Notations; Index
Sommario/riassunto: Stochastic filtering theory is a field that has seen a rapid development in recent years and this book, aimed at graduates and researchers in applied mathematics, provides an accessible introduction covering recent developments. - ;Stochastic Filtering Theory uses probability tools to estimate unobservable stochastic processes that arise in many applied fields including communication, target-tracking, and mathematical finance. As a topic, Stochastic Filtering Theory has progressed rapidly in recent years. For example, the (branching) particle system representation of the optimal filter has bee
Titolo autorizzato: An introduction to stochastic filtering theory  Visualizza cluster
ISBN: 1-383-03593-8
1-281-82550-6
9786611825508
0-19-155139-2
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910825354503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Oxford graduate texts in mathematics ; ; 18.