Vai al contenuto principale della pagina
Autore: | Diaconescu Razvan |
Titolo: | Institution-independent model theory / / Razvan Diaconescu |
Pubblicazione: | Basel ; ; Boston, : Birkhauser, c2008 |
Edizione: | 1st ed. 2008. |
Descrizione fisica: | 1 online resource (386 p.) |
Disciplina: | 511.3 |
511.34 | |
Soggetto topico: | Model theory |
Logic, Symbolic and mathematical | |
Note generali: | Description based upon print version of record. |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | Categories -- Institutions -- Theories and Models -- Internal Logic -- Model Ultraproducts -- Saturated Models -- Preservation and Axiomatizability -- Interpolation -- Definability -- Possible Worlds -- Grothendieck Institutions -- Institutions with Proofs -- Specification -- Logic Programming. |
Sommario/riassunto: | A model theory that is independent of any concrete logical system allows a general handling of a large variety of logics. This generality can be achieved by applying the theory of institutions that provides a precise mathematical formulation for the intuitive concept of a logical system. Especially in computer science, where the development of a huge number of specification logics is observable, institution-independent model theory simplifies and sometimes even enables a concise model-theoretic analysis of the system. Besides incorporating important methods and concepts from conventional model theory, the proposed top-down methodology allows for a structurally clean understanding of model-theoretic phenomena. As a consequence, results from conventional concrete model theory can be understood more easily, and sometimes even new results are obtained. |
Titolo autorizzato: | Institution-independent model theory |
ISBN: | 1-281-86259-2 |
9786611862596 | |
3-7643-8708-4 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910825090803321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |