Vai al contenuto principale della pagina
| Autore: |
Mashadi Behrooz
|
| Titolo: |
Vehicle powertrain systems / / Behrooz Mashadi, David Crolla
|
| Pubblicazione: | Chichester, West Sussex ; ; Hoboken, N.J., : Wiley, 2012 |
| Edizione: | 1st ed. |
| Descrizione fisica: | xix, 538 p |
| Disciplina: | 629.25/2 |
| Soggetto topico: | Automobiles - Power trains |
| Automobiles - Dynamics | |
| Altri autori: |
CrollaDavid A
|
| Nota di bibliografia: | Includes bibliographical references. |
| Nota di contenuto: | VEHICLE POWERTRAIN SYSTEMS -- Contents -- About the Authors -- Preface -- List of Abbreviations -- 1 Vehicle Powertrain Concepts -- 1.1 Powertrain Systems -- 1.1.1 Systems Approach -- 1.1.2 History -- 1.1.3 Conventional Powertrains -- 1.1.4 Hybrid Powertrains -- 1.2 Powertrain Components -- 1.2.1 Engine -- 1.2.2 Transmission -- 1.2.3 Vehicle Structure -- 1.2.4 Systems Operation -- 1.3 Vehicle Performance -- 1.4 Driver Behaviour -- 1.5 The Role of Modelling -- 1.6 Aim of the Book -- Further Reading -- References -- 2 Power Generation Characteristics of Internal Combustion Engines -- 2.1 Introduction -- 2.2 Engine Power Generation Principles -- 2.2.1 Engine Operating Modes -- 2.2.2 Engine Combustion Review -- 2.2.3 Engine Thermodynamics Review -- 2.2.4 Engine Output Characteristics -- 2.2.5 Cylinder Pressure Variations -- 2.3 Engine Modelling -- 2.3.1 Engine Kinematics -- 2.3.2 Engine Torque -- 2.3.3 A Simplified Model -- 2.3.4 The Flywheel -- 2.4 Multi-cylinder Engines -- 2.4.1 Firing Order -- 2.4.2 Engine Torque -- 2.4.3 Quasi-Steady Engine Torque -- 2.5 Engine Torque Maps -- 2.5.1 Engine Dynamometers -- 2.5.2 Chassis Dynamometers -- 2.5.3 Engine Torque-Speed Characteristics -- 2.6 Magic Torque (MT) Formula for Engine Torque -- 2.6.1 Converting Part Throttle Curves -- 2.6.2 The MT Formula -- 2.6.3 Interpretation -- 2.7 Engine Management System -- 2.7.1 Construction -- 2.7.2 Sensors -- 2.7.3 Maps and Look-up Tables -- 2.7.4 Calibration -- 2.8 Net Output Power -- 2.8.1 Engine Mechanical Efficiency -- 2.8.2 Accessory Drives -- 2.8.3 Environmental Effects -- 2.9 Conclusion -- 2.10 Review Questions -- 2.11 Problems -- Further Reading -- References -- 3 Vehicle Longitudinal Dynamics -- 3.1 Introduction -- 3.2 Torque Generators -- 3.2.1 Internal Combustion Engines -- 3.2.2 Electric Motors -- 3.3 Tractive Force -- 3.3.1 Tyre Force Generation. |
| 3.3.2 Mathematical Relations for Tractive Force -- 3.3.3 Traction Diagrams -- 3.4 Resistive Forces -- 3.4.1 Rolling Resistance -- 3.4.2 Vehicle Aerodynamics -- 3.4.3 Slopes -- 3.4.4 Resistance Force Diagrams -- 3.4.5 Coast Down Test -- 3.5 Vehicle Constant Power Performance (CPP) -- 3.5.1 Maximum Power Delivery -- 3.5.2 Continuous Gear-Ratio Assumption -- 3.5.3 Governing Equations -- 3.5.4 Closed Form Solution -- 3.5.5 Numerical Solutions -- 3.5.6 Power Requirements -- 3.5.7 Time of Travel and Distance -- 3.5.8 Maximum Speed -- 3.6 Constant Torque Performance (CTP) -- 3.6.1 Closed Form Solution -- 3.6.2 Numerical Solutions -- 3.7 Fixed Throttle Performance (FTP) -- 3.7.1 Gearshift and Traction Force -- 3.7.2 Acceleration, Speed and Distance -- 3.7.3 Shift Times -- 3.7.4 Maximum Speed at Each Gear -- 3.7.5 Best Acceleration Performance -- 3.7.6 Power Consumption -- 3.8 Throttle Pedal Cycle Performance (PCP) -- 3.9 Effect of Rotating Masses -- 3.9.1 Corrections to Former Analyses -- 3.10 Tyre Slip -- 3.11 Performance on a Slope -- 3.11.1 Constant Power Performance (CPP) -- 3.11.2 Constant Torque Performance (CTP) -- 3.11.3 Fixed Throttle (FT) -- 3.11.4 Variable Slopes -- 3.12 Vehicle Coast Down -- 3.12.1 Constant Rolling Resistance -- 3.12.2 Rolling Resistance as a Function of Speed -- 3.12.3 Inertia of Rotating Masses -- 3.13 Driveline Losses -- 3.13.1 Component Efficiencies -- 3.13.2 Torque Flow Direction -- 3.13.3 Effect of Rolling Resistance -- 3.14 Conclusion -- 3.15 Review Questions -- 3.16 Problems -- Further Reading -- References -- 4 Transmissions -- 4.1 Introduction -- 4.2 The Need for a Gearbox -- 4.3 Design of Gearbox Ratios -- 4.3.1 Lowest Gear -- 4.3.2 Highest Gear -- 4.3.3 Intermediate Gears -- 4.3.4 Other Influencing Factors -- 4.4 Gearbox Kinematics and Tooth Numbers -- 4.4.1 Normal Gears -- 4.4.2 Epicyclic Gear Sets. | |
| 4.5 Manual Transmissions -- 4.5.1 Construction and Operation -- 4.5.2 Dry Clutches -- 4.5.3 Diaphragm Springs -- 4.5.4 Clutch Engagement Dynamics -- 4.6 Automatic Transmissions -- 4.6.1 Conventional Automatics -- 4.6.2 AMTs -- 4.6.3 DCTs -- 4.7 CVTs -- 4.7.1 Classification -- 4.7.2 Friction CVTs -- 4.7.3 Ratcheting CVTs -- 4.7.4 Non-Mechanical CVTs -- 4.7.5 Idling and Launch -- 4.8 Conclusion -- 4.9 Review Questions -- 4.10 Problems -- Further Reading -- References -- 5 Fuel Consumption -- 5.1 Introduction -- 5.2 Engine Energy Consumption -- 5.2.1 BSFC Maps -- 5.2.2 BSFC and Engine Efficiency -- 5.3 Driving Cycles -- 5.3.1 Typical Driving Cycles -- 5.3.2 Calculations -- 5.3.3 Vehicle Tests -- 5.4 Vehicle Fuel Consumption -- 5.4.1 Map-free Fuel Consumption -- 5.4.2 Map-based Fuel Consumption -- 5.4.3 Effect of Rotating Masses -- 5.5 Shifting Effects -- 5.5.1 Effect of Shifting on EOP -- 5.5.2 Efficient Operating Points -- 5.6 Software -- 5.6.1 Solution Methodologies -- 5.6.2 ADVISOR® -- 5.7 Automated Gearshifts -- 5.7.1 Engine State -- 5.7.2 Driver's Intentions -- 5.7.3 Combined Shifting -- 5.7.4 Controller -- 5.7.5 Multigear Transmission Concept -- 5.8 Other Solutions for Fuel Efficiency -- 5.8.1 Powertrain Component Improvements -- 5.8.2 Lightweight Vehicles -- 5.8.3 Engine -- 5.8.4 Transmission -- 5.9 Conclusion -- 5.10 Review Questions -- 5.11 Problems -- Further Reading -- References -- 6 Driveline Dynamics -- 6.1 Introduction -- 6.2 Modelling Driveline Dynamics -- 6.2.1 Modelling Methods -- 6.2.2 Linear Versus Non-linear Models -- 6.2.3 Software Use -- 6.3 Bond Graph Models of Driveline Components -- 6.3.1 The Engine -- 6.3.2 The Clutch -- 6.3.3 The Transmission -- 6.3.4 Propeller and Drive Shafts -- 6.3.5 The Differential -- 6.3.6 The Wheel -- 6.3.7 Vehicle -- 6.4 Driveline Models -- 6.4.1 Full Driveline Model -- 6.4.2 Straight-Ahead Motion. | |
| 6.4.3 Rigid Body Model -- 6.4.4 Driveline with Clutch Compliance -- 6.4.5 Driveline with Driveshaft Compliance -- 6.4.6 Driveline with Clutch and Driveshaft Compliances -- 6.5 Analysis -- 6.5.1 Effect of Clutch Compliance -- 6.5.2 Effect of Driveshaft Compliance -- 6.5.3 Effect of Clutch and Driveshaft Compliances -- 6.5.4 Frequency Responses -- 6.5.5 Improvements -- 6.6 Conclusion -- 6.7 Review Questions -- 6.8 Problems -- Further Reading -- References -- 7 Hybrid Electric Vehicles -- 7.1 Introduction -- 7.2 Types of Hybrid Electric Vehicles -- 7.2.1 Basic Classification -- 7.2.2 Basic Modes of Operation -- 7.2.3 Other Derivatives -- 7.2.4 Degree of Hybridization -- 7.3 Power Split Devices -- 7.3.1 Simple PSD -- 7.3.2 EM Compound PSD -- 7.4 HEV Component Characteristics -- 7.4.1 The IC Engine -- 7.4.2 Electric Machines -- 7.4.3 The Battery -- 7.5 HEV Performance Analysis -- 7.5.1 Series HEV -- 7.5.2 Parallel HEV -- 7.6 HEV Component Sizing -- 7.6.1 General Considerations -- 7.6.2 Sizing for Performance -- 7.6.3 Optimum Sizing -- 7.7 Power Management -- 7.7.1 Control Potential -- 7.7.2 Control -- 7.8 Conclusion -- 7.9 Review Questions -- 7.10 Problems -- Further Reading -- References -- Appendix: An Introduction to Bond Graph Modelling -- A.1 Basic Concept -- A.2 Standard Elements -- A.2.1 Sources -- A.2.2 Passive Elements -- A.2.3 Two Port Elements -- A.2.4 Junctions -- A.3 Constructing Bond Graphs -- A.4 Equations of Motion -- A.4.1 Causality -- A.4.2 Assignment Procedure -- A.4.3 Bond Graph Numbering -- A.4.4 Component Equations -- A.4.5 Bond Graph Simplifications -- A.4.6 Derivation of Equations of Motion -- Index. | |
| Sommario/riassunto: | The powertrain is at the heart of vehicle design; the engine - whether it is a conventional, hybrid or electric design - provides the motive power, which is then managed and controlled through the transmission and final drive components. The overall powertrain system therefore defines the dynamic performance and character of the vehicle. The design of the powertrain has conventionally been tackled by analyzing each of the subsystems individually and the individual components, for example, engine, transmission and driveline have received considerable attention in textbooks over the past decades. The key theme of this book is to take a systems approach - to look at the integration of the components so that the whole powertrain system meets the demands of overall energy efficiency and good drivability. Vehicle Powertrain Systems provides a thorough description and analysis of all the powertrain components and then treats them together so that the overall performance of the vehicle can be understood and calculated. The text is well supported by practical problems and worked examples. Extensive use is made of the MATLAB (R) software and many example programmes for vehicle calculations are provided in the text. Key features: * Structured approach to explaining the fundamentals of powertrain engineering * Integration of powertrain components into overall vehicle design * Emphasis on practical vehicle design issues * Extensive use of practical problems and worked examples * Provision of MATLAB (R) programmes for the reader to use in vehicle performance calculations This comprehensive and integrated analysis of vehicle powertrain engineering provides an invaluable resource for undergraduate and postgraduate automotive engineering students and is a useful reference for practicing engineers in the vehicle industry |
| Titolo autorizzato: | Vehicle powertrain systems ![]() |
| ISBN: | 1-283-40488-5 |
| 9786613404886 | |
| 1-119-95837-7 | |
| 1-119-95836-9 | |
| 1-119-96102-5 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910823572203321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilitĂ qui |