Vai al contenuto principale della pagina
| Titolo: |
Index theory of elliptic operators, foliations, and operator algebras : proceedings of AMS Special Sessions, held January 7, 1986 and April 11, 1986 / / Jerome Kaminker, Kenneth C. Millett, and Claude Schochet, editors
|
| Pubblicazione: | Providence, Rhode Island : , : American Mathematical Society, , [1988] |
| ©1988 | |
| Descrizione fisica: | 1 online resource (333 p.) |
| Disciplina: | 515.7/242 |
| Soggetto topico: | Index theory (Mathematics) |
| Elliptic operators | |
| Foliations (Mathematics) | |
| Operator algebras | |
| Persona (resp. second.): | KaminkerJerome |
| MillettKenneth C. | |
| SchochetClaude <1944-> | |
| Note generali: | English and French. |
| Nota di bibliografia: | Includes bibliographical references. |
| Nota di contenuto: | Table of Contents -- Preface -- The theory of levels -- Toeplitz operators and the eta invariant: the case of S1 -- Sur la Conjecture de Novikov -- A new proof of the K-amenability of SU(1, 1) -- Some interesting group actions -- A relation between index and exotic classes -- The Universal Coefficient Theorem for equivariant K-theory of real and complex C*-algebras -- Equivariant K-theory for proper actions and C*-algebras -- Equivariant K-theory for proper actions II: some cases in which finite dimensional bundles suffice -- Operator algebras and index theory on non-compact manifolds -- K-theory of group C*-algebras, foliation algebras and crossed products -- Preface -- 1. Group C *-algebras and crossed products -- 2. Foliation C *-algebras -- 3. K-theory of C *-algebras -- 4. The Kasparov KK-functor -- 5. Batt periodicity revisited -- 6. The big picture -- Selected references -- Non-commutative CW-complexes. |
| Titolo autorizzato: | Index theory of elliptic operators, foliations, and operator algebras ![]() |
| ISBN: | 0-8218-7659-7 |
| 0-8218-5077-6 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910818824503321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |