Vai al contenuto principale della pagina

Electrocatalysis / / edited by Richard C. Alkire [and three others]



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Electrocatalysis / / edited by Richard C. Alkire [and three others] Visualizza cluster
Pubblicazione: Weinheim : , : Wiley-VCH, , [2013]
2013
Edizione: 1st ed.
Descrizione fisica: 1 online resource
Disciplina: 621.31
621.31/2429
621.312429
Soggetto topico: Electrocatalysis
Electrochemistry, Industrial
Fuel cells
Altri autori: AlkireR. C. <1941->  
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Electrocatalysis: Theoretical Foundations and Model Experiments -- Contents -- Preface -- List of Contributors -- 1 Multiscale Modeling of Electrochemical Systems -- 1.1 Introduction -- 1.2 Introduction to Multiscale Modeling -- 1.3 Electronic Structure Modeling -- 1.3.1 Modern Electronic Structure Theory -- 1.3.1.1 Quantum Mechanical Foundations -- 1.3.1.2 Born-Oppenheimer Approximation -- 1.3.1.3 Single-Electron Hamiltonians -- 1.3.1.4 Basis Sets -- 1.3.1.5 Enforcing the Pauli Principle -- 1.3.1.6 Electron Correlation Methods -- 1.3.1.7 Density Functional Theory -- 1.3.2 Applications of Electronic Structure to Geometric Properties -- 1.3.2.1 Geometry Optimization -- 1.3.2.2 Transition State Searches -- 1.3.3 Corrections to Potential Energy Surfaces and Reaction Pathways -- 1.3.3.1 Energy and Entropy Corrections -- 1.3.3.2 Thermodynamic State Functions -- 1.3.3.3 Reaction Energies and Rates -- 1.3.4 Electronic Structure Models in Electrochemistry -- 1.3.4.1 Modeling the Electrode Surface: Cluster versus Slab -- 1.3.4.2 Modeling the Solvent: Explicit versus Implicit -- 1.3.4.3 Modeling the Electrode Potential -- 1.3.5 Summary -- 1.4 Molecular Simulations -- 1.4.1 Energy Terms and Force Field Parameters -- 1.4.1.1 Covalent Bond Interactions -- 1.4.1.2 Non-Covalent Interactions -- 1.4.2 Parametrization and Validation -- 1.4.3 Atomistic Simulations -- 1.4.3.1 Monte Carlo Methods -- 1.4.3.2 Molecular Dynamics -- 1.4.3.3 QM/MM -- 1.4.4 Sampling and Analysis -- 1.4.5 Applications of Molecular Modeling in Electrochemistry -- 1.4.6 Summary -- 1.5 Reaction Modeling -- 1.5.1 Introduction -- 1.5.2 Chemical Kinetics -- 1.5.3 Kinetic Monte Carlo -- 1.5.3.1 System States and the Lattice Approximation -- 1.5.3.2 Reaction Rates -- 1.5.3.3 Reaction Dynamics -- 1.5.3.4 Applications of kMC in Electrochemistry -- 1.5.4 Summary.
1.6 The Oxygen Reduction Reaction on Pt(111) -- 1.6.1 Introduction to the Oxygen Reduction Reaction -- 1.6.2 Preliminary Considerations -- 1.6.3 DFT Calculations -- 1.6.4 Method Validation -- 1.6.5 Reaction Energies -- 1.6.6 Solvation Effects -- 1.6.7 Free Energy Contributions -- 1.6.8 Influence of an Electrode Potential -- 1.6.9 Modeling the Kinetic Rates -- 1.6.10 Summary -- 1.7 Formic Acid Oxidation on Pt(111) -- 1.7.1 Introduction to Formic Acid Oxidation -- 1.7.2 Density Functional Theory Calculations -- 1.7.3 Gas Phase Reactions -- 1.7.4 Explicit Solvation Model -- 1.7.5 Eley-Rideal Mechanisms and the Electrode Potential -- 1.7.6 Kinetic Rate Model of Formic Acid Oxidation -- 1.7.7 Summary -- 1.8 Concluding Remarks -- References -- 2 Statistical Mechanics and Kinetic Modeling of Electrochemical Reactions on Single-Crystal Electrodes Using the Lattice-Gas Approximation -- 2.1 Introduction -- 2.2 Lattice-Gas Modeling of Electrochemical Surface Reactions -- 2.3 Statistical Mechanics and Approximations -- 2.3.1 Static System -- 2.3.2 Dynamical System -- 2.4 Monte Carlo Simulations -- 2.5 Applications to Electrosorption, Electrodeposition and Electrocatalysis -- 2.5.1 Electrosorption and Electrodeposition -- 2.5.2 Electrocatalysis -- 2.6 Conclusions -- References -- 3 Single Molecular Electrochemistry within an STM -- 3.1 Introduction -- 3.2 Experimental Methods for Single Molecule Electrical Measurements in Electrochemical Environments -- 3.3 Electron Transfer Mechanisms -- 3.3.1 Tunneling -- 3.3.2 Resonant Tunneling -- 3.3.3 Hopping Models -- 3.4 Single Molecule Electrochemical Studies with an STM -- 3.4.1 Adsorbed Iron Complexes -- 3.4.2 Viologens -- 3.4.3 Osmium and Cobalt Metal Complexes -- 3.4.4 PyrroloTTF (pTTF) -- 3.4.5 Perylene Tetracarboxylic Diimides -- 3.4.6 Oligo(phenylene ethynylene) Derivates -- 3.5 Conclusions and Outlook.
References -- 4 From Microbial Bioelectrocatalysis to Microbial Bioelectrochemical Systems -- 4.1 Prelude: From Fundamentals to Biotechnology -- 4.2 Microbial Bioelectrochemical Systems (BESs) -- 4.2.1 The Archetype: Microbial Fuel Cells (MFCs) -- 4.2.2 Strength Through Diversity: Microbial Bioelectrochemical Systems -- 4.3 Bioelectrocatalysis: Microorganisms Catalyze Electrochemical Reactions -- 4.3.1 Energetic Considerations of Microbial Bioelectrocatalysis -- 4.3.1.1 Case Study: The Anodic Acetate Oxidation by Geobacteraceae -- 4.3.1.2 Case Study: The Cathodic Hydrogen Evolution Reaction (HER) -- 4.3.2 Microbial Electron Transfer Mechanisms -- 4.3.2.1 Direct Electron Transfer (DET) -- 4.3.2.2 Mediated Electron Transfer (MET) -- 4.3.2.3 Cathodic Electron Transfer Mechanisms -- 4.3.3 Microbial Interactions: Ecological Networks -- 4.3.3.1 Interspecies Electron Transfer and "Scavenging" of Redox-Shuttles -- 4.4 Characterizing Anodic Bio.lms by Electrochemical and Biological Means -- 4.4.1.1 Case Study: On the use of Cyclic Voltammetry -- 4.4.1.2 Case Study: Raman Microscopy -- References -- 5 Electrocapillarity of Solids and its Impact on Heterogeneous Catalysis -- 5.1 Introduction -- 5.2 Mechanics of Solid Electrodes -- 5.2.1 Outline - Surface Stress and Surface Tension -- 5.2.2 Solid Versus Fluid -- 5.2.3 Free Energy of Elastic Solid Surfaces -- 5.2.4 Deforming a Solid Surface -- 5.2.5 Case Study: Thought Experiment in Electrowetting -- 5.2.6 Capillary Equations for Fluids and Solids -- 5.2.7 Case Study: Molecular Dynamics Study of Surface-Induced Pressure -- 5.3 Electrocapillary Coupling at Equilibrium -- 5.3.1 Outline - Polarizable and Nonpolarizable Electrodes -- 5.3.2 Lippmann Equation and Electrocapillary Coupling Coefficient -- 5.3.3 Case Study: Cantilever-Bending Experiment in Electrolyte.
5.3.4 Important Maxwell Relations for Electrocapillarity -- 5.3.5 Electrocapillary Coupling During Electrosorption -- 5.3.6 Coupling Coefficient for Adsorption from Gas -- 5.3.7 Coupling Coefficient for the Langmuir Isotherm -- 5.3.8 Case Study: Strain-Dependent Hydrogen Underpotential Deposition -- 5.3.9 Coupling Coefficient for Potential of Zero Charge and Work Function -- 5.3.10 Empirical Data for the Electrocapillary Coupling Coefficient -- 5.4 Exploring the Dynamics -- 5.4.1 Outline -- 5.4.2 Cyclic Cantilever-Bending Experiments -- 5.4.3 Dynamic Electro-Chemo-Mechanical Analysis -- 5.5 Mechanically Modulated Catalysis -- 5.5.1 Outline -- 5.5.2 Phenomenology -- Distinguishing Capacitive from Faraday Current -- 5.5.3 Rate equations: Butler-Volmer kinetics -- 5.5.4 Rate Equations: Heyrowsky Reaction -- 5.6 Summary and Outlook -- References -- 6 Synthesis of Precious Metal Nanoparticles with High Surface Energy and High Electrocatalytic Activity -- 6.1 Introduction -- 6.2 Shape-Controlled Synthesis of Monometallic Nanocrystals with High Surface Energy -- 6.2.1 Electrochemical Route -- 6.2.1.1 Platinum -- 6.2.1.2 Palladium -- 6.2.2 Wet-Chemical Route -- 6.2.2.1 Platinum -- 6.2.2.2 Palladium -- 6.2.2.3 Gold -- 6.3 Shape-Controlled Synthesis of Bimetallic NCs with High Surface Energy -- 6.3.1 Surface Modification -- 6.3.1.1 Bi-Modified THH Pt NCs -- 6.3.1.2 Ru-Modified THH Pt NCs -- 6.3.1.3 Au-Modified Pt THH NCs -- 6.3.1.4 Pt-Modified Au Prisms with High-Index Facets -- 6.3.2 Alloy NCs -- 6.3.2.1 THH PdPt Alloy -- 6.3.2.2 HOH PdAu Alloy -- 6.3.3 Core-Shell Structured NCs -- 6.4 Concluding Remarks and Perspective -- References -- 7 X-Ray Studies of Strained Catalytic Dealloyed Pt Surfaces -- 7.1 Introduction -- 7.2 Dealloyed Bimetallic Surfaces -- 7.3 Dealloyed Strained Pt Core-Shell Model Surfaces.
7.4 X-Ray Studies of Dealloyed Strained PtCu3(111) Single Crystal Surfaces -- 7.5 X-Ray Studies of Dealloyed Strained Pt-Cu Polycrystalline Thin Film Surfaces -- 7.6 X-Ray Studies of Dealloyed Strained Alloy Nanoparticles -- 7.6.1 Bragg Brentano Powder X-Ray Diffraction (XRD) -- 7.6.2 In Situ High Temperature Powder X-Ray Diffraction (XRD) -- 7.6.3 Synchrotron X-Ray Photoemission Spectroscopy (XPS) -- 7.6.4 Anomalous Small Angle X-Ray Scattering (ASAXS) -- 7.6.5 Anomalous Powder X-Ray Diffraction (AXRD) -- 7.6.6 High Energy X-Ray Diffraction (HE-XRD) and Atomic Pair Distribution Function (PDF) Analysis -- 7.7 Conclusions -- References -- Index.
Titolo autorizzato: Electrocatalysis  Visualizza cluster
ISBN: 3-527-68043-8
3-527-68045-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910818200303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Advances in electrochemical science and engineering ; ; v. 14.