Vai al contenuto principale della pagina
Autore: | Gulisashvili Archil |
Titolo: | Non-autonomous Kato classes and Feynman-Kac propagators / / Archil Gulisashvili, Jan A. van Casteren |
Pubblicazione: | Singapore ; ; Hackensack, N.J., : World Scientific, 2006 |
Edizione: | 1st ed. |
Descrizione fisica: | 1 online resource (360 p.) |
Disciplina: | 530.15 |
Soggetto topico: | Linear operators |
Banach spaces | |
Operator theory | |
Altri autori: | CasterenJ. A. van |
Note generali: | Description based upon print version of record. |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | Contents ; Preface ; 1. Transition Functions and Markov Processes ; 1.1 Introduction ; 1.1.1 Notation ; 1.1.2 Elements of Probability Theory ; 1.1.3 Locally Compact Spaces ; 1.1.4 Stochastic Processes ; 1.1.5 Filtrations ; 1.2 Markov Property |
1.3 Transition Functions and Backward Transition Functions 1.4 Markov Processes Associated with Transition Functions ; 1.5 Space-Time Processes ; 1.6 Classes of Stochastic Processes ; 1.7 Completions of o-Algebras | |
1.8 Path Properties of Stochastic Processes: Separability and Progressive Measurability 1.9 Path Properties of Stochastic Processes: One-Sided Continuity and Continuity ; 1.10 Reciprocal Transition Functions and Reciprocal Processes ; 1.11 Path Properties of Reciprocal Processes | |
1.12 Examples of Transition Functions and Markov Processes 1.12.1 Brownian motion and Brownian bridge ; 1.12.2 Cauchy process and Cauchy bridge ; 1.12.3 Forward Kolmogorov representation of Brownian bridges ; 1.13 Notes and Comments ; 2. Propagators: General Theory | |
2.1 Propagators and Backward Propagators on Banach Spaces 2.2 Free Propagators and Free Backward Propagators ; 2.3 Generators of Propagators and Kolmogorov's Forward and Backward Equations ; 2.4 Howland Semigroups | |
2.5 Feller-Dynkin Propagators and the Continuity Properties of Markov Processes | |
Sommario/riassunto: | This book provides an introduction to propagator theory. Propagators, or evolution families, are two-parameter analogues of semigroups of operators. Propagators are encountered in analysis, mathematical physics, partial differential equations, and probability theory. They are often used as mathematical models of systems evolving in a changing environment. A unifying theme of the book is the theory of Feynman-Kac propagators associated with time-dependent measures from non-autonomous Kato classes. In applications, a Feynman-Kac propagator describes the evolution of a physical system in the pre |
Titolo autorizzato: | Non-autonomous Kato classes and Feynman-Kac propagators |
ISBN: | 1-281-91956-X |
9786611919566 | |
981-277-460-2 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910814857803321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |