Vai al contenuto principale della pagina
Titolo: | Semi-supervised learning / / [edited by] Olivier Chapelle, Bernhard Sch?olkopf, Alexander Zien |
Pubblicazione: | Cambridge, Mass., : MIT Press, c2006 |
Edizione: | 1st ed. |
Descrizione fisica: | 1 online resource (528 p.) |
Disciplina: | 006.3/1 |
Soggetto topico: | Supervised learning (Machine learning) |
Altri autori: | ChapelleOlivier Sch?olkopfBernhard ZienAlexander |
Note generali: | Description based upon print version of record. |
Nota di bibliografia: | Includes bibliographical references (p. [479]-497). |
Nota di contenuto: | Contents; Series Foreword; Preface; 1 - Introduction to Semi-Supervised Learning; 2 - A Taxonomy for Semi-Supervised Learning Methods; 3 - Semi-Supervised Text Classification Using EM; 4 - Risks of Semi-Supervised Learning: How Unlabeled Data Can Degrade Performance of Generative Classifiers; 5 - Probabilistic Semi-Supervised Clustering with Constraints; 6 - Transductive Support Vector Machines; 7 - Semi-Supervised Learning Using Semi- Definite Programming; 8 - Gaussian Processes and the Null-Category Noise Model; 9 - Entropy Regularization; 10 - Data-Dependent Regularization |
11 - Label Propagation and Quadratic Criterion12 - The Geometric Basis of Semi-Supervised Learning; 13 - Discrete Regularization; 14 - Semi-Supervised Learning with Conditional Harmonic Mixing; 15 - Graph Kernels by Spectral Transforms; 16- Spectral Methods for Dimensionality Reduction; 17 - Modifying Distances; 18 - Large-Scale Algorithms; 19 - Semi-Supervised Protein Classification Using Cluster Kernels; 20 - Prediction of Protein Function from Networks; 21 - Analysis of Benchmarks; 22 - An Augmented PAC Model for Semi- Supervised Learning | |
23 - Metric-Based Approaches for Semi- Supervised Regression and Classification24 - Transductive Inference and Semi-Supervised Learning; 25 - A Discussion of Semi-Supervised Learning and Transduction; References; Notation and Symbols; Contributors; Index | |
Sommario/riassunto: | A comprehensive review of an area of machine learning that deals with the use of unlabeled data in classification problems, this text looks at state-of-the-art algorithms, applications benchmark experiments, and directions for future research. |
Titolo autorizzato: | Semi-supervised learning |
ISBN: | 1-282-09618-4 |
0-262-25589-8 | |
1-4294-1408-1 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910809030503321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |