Vai al contenuto principale della pagina
Autore: | Bertram Wolfgang <1965-> |
Titolo: | Differential geometry, Lie groups, and symmetric spaces over general base fields and rings / / Wolfgang Bertram |
Pubblicazione: | Providence, Rhode Island : , : American Mathematical Society, , [2008] |
©2008 | |
Descrizione fisica: | 1 online resource (218 p.) |
Disciplina: | 510 s |
512/.482 | |
Soggetto topico: | Infinite dimensional Lie algebras |
Infinite-dimensional manifolds | |
Symmetric spaces | |
Geometry, Differential | |
Note generali: | Description based upon print version of record. |
Nota di bibliografia: | Includes bibliographical references (pages 199-202). |
Nota di contenuto: | ""Contents""; ""Introduction""; ""I. Basic notions""; ""1. Differential calculus""; ""2. Manifolds""; ""3. Tangent bundle and general fiber bundles""; ""4. The Lie bracket of vector fields""; ""5. Lie groups and symmetric spaces: basic facts""; ""II. Interpretation of tangent objects via scalar extensions""; ""6. Scalar extensions. I: Tangent functor and dual numbers""; ""7. Scalar extensions. II: Higher order tangent functors""; ""8. Scalar extensions. Ill: Jet functor and truncated polynomial rings""; ""III. Second order differential geometry"" |
""9. The structure of the tangent bundle of a vector bundle""""10. Linear connections. I: Linear structures on bilinear bundles""; ""11. Linear connections. II: Sprays""; ""12. Linear connections. Ill: Covariant derivative""; ""13. Natural operations. I: Exterior derivative of a one-form""; ""14. Natural operations. II: The Lie bracket revisited""; ""IV. Third and higher order differential geometry""; ""15. The structure of T[sup(k)]F: Multilinear bundles""; ""16. The structure of T[sup(k)]F: Multilinear connections""; ""17. Construction of multilinear connections""; ""18. Curvature"" | |
""19. Linear structures on jet bundles""""20. Shifts and symmetrization""; ""21. Remarks on differential operators and symbols""; ""22. The exterior derivative""; ""V. Lie Theory""; ""23. The three canonical connections of a Lie group""; ""24. The structure of higher order tangent groups""; ""25. Exponential map and Campbell-Hausdorff formula""; ""26. The canonical connection of a symmetric space""; ""27. The higher order tangent structure of symmetric spaces""; ""VI.Diffeomorphism Groups and the exponential jet""; ""28. Group structure on the space of sections of T[sup(k)]M"" | |
""29. The exponential jet for vector fields""""30. The exponential jet of a symmetric space""; ""31. Remarks on the exponential jet of a general connection""; ""32. From germs to jets and from jets to germs""; ""Appendix L. Limitations""; ""Appendix G. Generalizations""; ""Appendix: Multilinear Geometry""; ""BA. Bilinear algebra""; ""MA. Multilinear algebra""; ""SA. Symmetric and shift invariant multilinear algebra""; ""PG. Polynomial groups""; ""References"" | |
Titolo autorizzato: | Differential geometry, Lie groups, and symmetric spaces over general base fields and rings |
ISBN: | 1-4704-0506-7 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910788851903321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |