Vai al contenuto principale della pagina

Physical principles in sensing and signaling [[electronic resource] ] : with an introduction to modeling in biology / / Robert G. Endres



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Endres Robert G Visualizza persona
Titolo: Physical principles in sensing and signaling [[electronic resource] ] : with an introduction to modeling in biology / / Robert G. Endres Visualizza cluster
Pubblicazione: Oxford, : Oxford University Press, 2013
Descrizione fisica: 1 online resource (158 p.)
Disciplina: 571.43
571.634
Soggetto topico: Biology - Simulation methods
Biology - Mathematical models
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover; Contents; 1 Introduction; Chapter summary; Further reading; 2 Chemotaxis in bacterium Escherichia coli; 2.1 Chemical gradient sensing; 2.2 "Nose and brain": the receptor cluster; 2.3 E. coli chemotaxis pathway; 2.4 Experimental approaches; 2.5 Time-course data and dose-response curves; Chapter summary; Further reading; 3 Physical concepts; 3.1 Diffusion; 3.2 Boltzmann distribution; 3.3 Ligand-receptor binding; 3.4 Fluctuation-dissipation theorem; Chapter summary; Further reading; 4 Mathematical tools; 4.1 Ordinary differential equations; 4.2 Kinetic laws; 4.3 Master equation
4.4 Poisson distribution4.5 Waiting-time distribution; 4.6 Langevin small-noise approximation; 4.7 Information theory; Chapter summary; Further reading; 5 Signal amplification and integration; 5.1 Cooperativity by allostery; 5.2 Emergence of allostery from microscopic details; 5.3 Two-state equilibrium receptor model; 5.4 Monod-Wyman-Changeux model for receptor signaling; 5.5 Alternative Ising model for receptor cluster; Chapter summary; Further reading; 6 Robust precise adaptation; 6.1 Energy-landscape picture of adaptation; 6.2 Dynamics of adaptation; 6.3 Chemotactic response function
6.4 Integral-feedback control6.5 Assistance neighborhoods; Chapter summary; Further reading; 7 Polar receptor localization and clustering; 7.1 Trimer of dimers; 7.2 Elastic cluster-membrane model; 7.3 Polar receptor clustering; Chapter summary; Further reading; 8 Accuracy of sensing; 8.1 Perfectly absorbing sphere; 8.2 Perfectly monitoring sphere; 8.3 Sensing with cell-surface receptors; Chapter summary; Further reading; 9 Motor impulse response; 9.1 Impulse response; 9.2 Time and frequency domains; 9.3 Minimal pathway model; 9.4 Linear response approximation; 9.5 Noise power spectra
Chapter summaryFurther reading; 10 Optimization of pathway; 10.1 Optimal receptor-complex size; 10.2 Optimal adaptation dynamics; Chapter summary; Further reading; 11 "Seeing like a bacterium"; 11.1 Typical chemical gradients; 11.2 Weber's law; 11.3 Perception; 11.4 Fold-change detection; 11.5 Matching relations; 11.6 Predicting typical stimuli; Chapter summary; Further reading; 12 Beyond E. coli chemotaxis; Chapter summary; Further reading; Appendix More techniques; A.1 Derivation of the fluctuation-dissipation theorem; A.2 Variational principles and the Euler-Lagrange equation
A.3 Gillespie simulationsA.4 Fokker-Planck approximation; A.5 Derivation of the Langevin noise; A.6 Time versus frequency domain; A.7 Model fitting to data; A.8 Principal component analysis; Chapter summary; Further reading; Index; A; B; C; D; E; F; G; H; I; L; M; N; O; P; Q; R; S; T; V; W
Sommario/riassunto: Although invisible to the bare eye, bacterial cells are large enough to make complex decisions. Cells are composed of thousands of different molecular species including DNA, proteins, and smaller molecules, allowing them to sense their environment, to process this information, and to respond accordingly. Such responses include expression of genes or the control of their movement. Despite these properties, a living cell exists in the physical world and follows its laws. Keeping thisin mind can help answer questions such as how cells work and why they implement solutions to problems the way they
Titolo autorizzato: Physical principles in sensing and signaling  Visualizza cluster
ISBN: 1-283-85621-2
0-19-165428-0
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910779363403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui