Vai al contenuto principale della pagina
Titolo: | Nanosensing and bioanalytical technologies in food quality control / / edited by Pranjal Chandra and Parmjit S. Panesar |
Pubblicazione: | Singapore : , : Springer, , [2022] |
©2022 | |
Descrizione fisica: | 1 online resource (447 pages) |
Disciplina: | 910.5 |
Soggetto topico: | Food science |
Persona (resp. second.): | ChandraPranjal |
PanesarP. S (Parmjit Singh) | |
Nota di bibliografia: | Includes bibliographical references. |
Nota di contenuto: | Intro -- Preface -- Contents -- About the Editors -- 1: Application of Nanomaterials in Food Quality Assessment -- 1.1 Introduction -- 1.2 Carbon-based Nanoparticles and Their Applications in Food Safety Monitoring -- 1.2.1 MXene Nanoparticles -- 1.2.2 Carbon Nitride Nanoparticles -- 1.2.3 Graphene and Derivatives -- 1.3 Metallic Nanoparticles and Their Applications in Food Safety Monitoring -- 1.3.1 Gold Nanoparticles (AuNPs) -- 1.3.2 Silver Nanoparticles (AgNPs) -- 1.4 Fluorescent Nanoparticles and Their Applications in Food Safety Monitoring -- 1.4.1 Quantum dots (QDs) -- 1.4.2 Upconversion nanoparticles (UCNPs) -- 1.4.3 Other Fluorescent Nanoparticles -- 1.5 Conclusion -- References -- 2: Electrochemical Biosensors for Food Safety Control in Food Processing -- 2.1 Introduction -- 2.2 Electrochemical Biosensor for Food Safety -- 2.2.1 Mycotoxins -- 2.2.2 Pathogenic Bacteria -- 2.2.3 Pesticides -- 2.3 Future Perspectives -- References -- 3: Aptamer-Based Sensors for Drug Analysis -- 3.1 Introduction -- 3.2 Antibiotic Drugs -- 3.2.1 Aminoglycosides -- 3.2.1.1 Kanamycin -- 3.2.1.2 Tobramycin -- 3.2.1.3 Streptomycin -- 3.2.1.4 Neomycin -- 3.2.2 beta-Lactams -- 3.2.3 Fluoroquinolones -- 3.2.4 Sulfonamides -- 3.2.5 Chloramphenicol -- 3.2.6 Tetracyclines -- 3.3 Chemotherapeutic Drugs -- 3.3.1 Bleomycin -- 3.3.2 Daunorubicin -- 3.3.3 Doxorubicin -- 3.3.4 Irinotecan -- 3.3.5 Amifostine -- 3.4 Cardiovascular Drugs -- 3.5 Antidiabetic Drugs -- 3.6 Respiratory Drugs -- 3.7 Conclusions -- References -- 4: Paper-Based Devices for the Detection of Food-Related Analyte -- 4.1 Introduction -- 4.2 Food Safety Analytes -- 4.3 Fabrication and Development of Paper-Based Sensors -- 4.3.1 Fabrication Methods of Paper-Based Sensors -- 4.3.2 Formats of Paper-Based Sensors -- 4.3.2.1 Dipstick Assays -- 4.3.2.2 Lateral Flow Assays -- 4.3.2.3 Microfluidic Devices. |
4.4 Detection methods -- 4.4.1 Colorimetric -- 4.4.2 Fluorescence -- 4.4.3 Chemiluminescence -- 4.4.4 Surface-Enhanced Raman Scattering -- 4.4.5 Electrochemical -- 4.5 Current Limitations -- 4.6 Conclusion and Future Perspectives -- References -- 5: Optical Detection of Targets for Food Quality Assessment -- 5.1 Introduction -- 5.2 Food Safety Analytes -- 5.2.1 Pathogens -- 5.2.2 Toxins -- 5.2.3 Heavy Metals -- 5.2.4 Pesticide Residues -- 5.2.5 Veterinary Drug -- 5.2.6 Illegal Additives -- 5.3 Detection Based on Optical Sensors -- 5.3.1 Colorimetric -- 5.3.2 Fluorescence -- 5.3.3 Chemiluminescence -- 5.3.4 Surface-Enhanced Raman Scattering -- 5.3.5 Surface Plasmon Resonance -- 5.4 Conclusion and Future Perspectives -- References -- 6: Nanotechnology in Food Security and Quality -- 6.1 Introduction -- 6.2 Conventional Methods for Food Safety -- 6.3 Application of Nanotechnology in Food Industry -- 6.3.1 Application of Nanomaterials in Surface Disinfection -- 6.3.2 Nanotechnology-Based Application in Food Chain -- 6.3.3 Nanotechnology in Food Packaging -- 6.3.4 Nanobiosensors in Food Industry -- 6.4 Conclusion -- References -- 7: Electrochemical Sensors for the Detection of Food Adulterants in Miniaturized Settings -- 7.1 Introduction -- 7.1.1 Types of Food Adulteration -- 7.2 Electrochemical-Miniaturized Sensors for Intentional Adulteration -- 7.2.1 Electrochemical Sensors for Milk Adulteration -- 7.2.1.1 Electrochemical Detection of Melamine in Milk -- 7.2.1.2 Electrochemical Detection of Urea in Milk -- 7.2.1.3 Electrochemical Detection of Hydrogen Peroxide in Milk -- 7.2.2 Electrochemical Sensors for Adulteration in Meat -- 7.2.2.1 Electrochemical Detection of Meat Adulteration -- 7.2.2.2 Electrochemical Detection of Formaldehyde in Fish -- 7.2.3 Electrochemical Detection of Synthetic Food Dyes in Soft Drinks. | |
7.3 Electrochemical Sensors for Unintentional Adulteration -- 7.3.1 Electrochemical Sensing of Pesticides, Insecticides, and Fungicides -- 7.3.2 Electrochemical Detection of Veterinary Drug Residues -- 7.3.3 Electrochemical Sensing of Pathogenic Bacteria and Fungus in Food Samples -- 7.3.4 Detection of Heavy Metal Ions Using Electrochemical-Miniaturized Sensors -- References -- 8: Potential of Nanotechnology in Food Analysis and Quality Improvement -- 8.1 Introduction -- 8.2 Potential of Nanotechnology in Food Industry -- 8.2.1 Nanotechnology in Food Analysis -- 8.2.1.1 Detection of Sugars -- 8.2.1.2 Detection of Antioxidants -- 8.2.1.3 Determination of Other Analytes -- 8.2.1.4 Detection of Pathogens -- 8.2.1.5 Detection of Toxins -- 8.2.1.6 Detection of Adulterants -- 8.2.2 Nanotechnology in Food Packaging -- 8.2.2.1 Sensing the Food Spoilage Using Smart Nanopackaging -- 8.2.2.2 Improving the Food Products Using Active Nanopackaging -- 8.2.2.3 Enhancing the Food Quality Using Improved Nanopackaging -- 8.2.3 Nanotechnology for Delivery of Bioactive Compounds -- 8.2.3.1 Lipid-Based Nanocarriers -- 8.2.3.2 Special Equipment-Based Nanocarriers -- 8.2.3.3 Nature-Inspired Nanocarriers -- 8.2.3.4 Biopolymer Nanoparticles -- 8.2.3.5 Miscellaneous Nanocarriers -- 8.2.4 Summary and Future Prospects -- References -- 9: Advancements in Molecular Techniques for the Detection of Foodborne Pathogens -- 9.1 Introduction -- 9.2 Molecular Methods for Detection of FBPs -- 9.2.1 Basic Methods -- 9.2.1.1 Cyclic Amplification Techniques -- Polymerase Chain Reaction (PCR) -- Loop-Mediated Isothermal Amplification -- Single-Stranded Conformation Polymorphism PCR -- Ligase Chain Reaction PCR -- Restriction Fragment Length Polymorphism -- Amplified Fragment Length Polymorphism -- Random Amplified Polymorphic DNA Technique -- 9.2.1.2 Isothermal amplification techniques. | |
Nucleic Acid Sequence-Based Amplification -- Rolling Circle Amplification -- Strand Displacement Amplification -- 9.2.1.3 Nucleic Acid Hybridization Techniques -- Fluorescent In Situ Hybridization -- Peptide Nucleic Acid-FISH -- 9.2.1.4 Detection by Multiple Targets -- DNA Microarray -- Multiplex PCR -- 9.2.2 Advanced Molecular Techniques -- 9.2.2.1 Pulse Field Gel Electrophoresis -- 9.2.2.2 Ribotyping -- 9.2.2.3 Repetitive Extragenic Palindromic PCR -- 9.2.2.4 Multilocus Sequencing Typing -- 9.2.2.5 DNase-Treated DNA (DTD) PCR -- 9.2.3 Signal-Based Techniques -- 9.2.4 Immunological Techniques -- 9.2.5 Smart Devices for FBP Detection -- 9.3 Conclusions and Perspectives -- References -- 10: Aptamer-Based Technologies in Foodborne Pathogen Detection -- 10.1 Introduction -- 10.1.1 Pathogenic Bacteria in Food -- 10.1.1.1 Salmonella -- 10.1.1.2 Listeria monocytogenes -- 10.1.1.3 Vibrio parahaemolyticus -- 10.1.1.4 Staphylococcus aureus -- 10.1.1.5 Escherichia coli -- 10.1.2 Detection of Pathogenic Bacteria -- 10.1.3 SELEX Methods for Aptamers -- 10.1.3.1 Conventional SELEX Methods -- 10.1.3.2 Other Types of SELEXS -- Ultrafiltration SELEX -- Centrifugal Precipitation SELEX -- Nitrocellulose Membrane Filtration SELEX -- Affinity Chromatography SELEX -- Capillary Electrophoresis SELEX -- Microfluidic SELEX -- Whole-Cell SELEX -- Genomic SELEX -- 10.1.3.3 Advanced SELEX methods -- Aptamer Selection Express -- Artificially Expanded Genetic Information Systems-SELEX -- 10.2 Application of Aptamer in Pathogen Detection -- 10.2.1 ELISA Detection -- 10.2.2 Fluorescence Detection -- 10.2.3 Surface Plasmon Resonance Detections -- 10.2.4 Electrochemical Biosensors -- 10.2.5 Lateral Chromatography Test Strips -- 10.2.6 Surface-Enhanced Raman Scattering Detection -- 10.2.7 Flow Cytometry Detection -- References -- 11: Nanomaterials-Based Immunosensors in Food Analysis. | |
11.1 Introduction -- 11.2 Immunosensors -- 11.2.1 Bioreceptors in Immunosensor -- 11.2.2 Methods in Immunoassays -- 11.2.3 Nanomaterials in Immunosensor -- 11.3 Fabrication of Immunosensor in Food Assay -- 11.3.1 Bioconjugation of Immunogens on Nanomaterials -- 11.3.2 Sensing Strategies -- 11.4 Food Analysis Using Nanomaterials-Based Immunosensors -- 11.4.1 Electrochemical Immunosensors (ECM-IS) -- 11.4.1.1 Metal Nanostructures-Based ECM-IS -- 11.4.1.2 Carbon Nanomaterials-Based ECM-IS -- 11.4.1.3 Composite Nanomaterials-Based ECM-IS -- 11.4.2 Optical and Spectroscopy-Based Immunosensors -- 11.4.2.1 Colorimetric and Absorbance-Based Immunosensors -- 11.4.2.2 Surface-Enhanced Raman Spectroscopy (SERS)-Based Immunosensors -- 11.4.2.3 Fluorescent-Based Immunosensor -- 11.4.3 Piezoelectric-Based Immunosensor -- 11.5 Conclusion and Future Prospective -- References -- 12: Role of Analytical Techniques in Food Quality Control and Safety -- 12.1 Quality and Safety -- 12.1.1 Principles of HACCP -- 12.1.2 Preliminary Tasks of HACCP -- 12.2 History of Utilization of Analytical Techniques in Food Quality Control and Safety -- 12.3 Importance of Quality and Safety in Food Industry -- 12.4 Steps in Food Analysis -- 12.4.1 Sample Preparation -- 12.4.1.1 Homogenizing the Sample -- 12.4.1.2 Reducing the Sample Size -- 12.4.1.3 Preservation of Sample -- 12.4.1.4 Labelling the Sample and Its Identification -- 12.4.2 Analytical Procedures -- 12.4.3 Data Analysis and Reporting -- 12.5 Selection of Analytical Methods for Food Analysis -- 12.6 Brief Overview of Various Analytical Techniques -- 12.7 Conclusion -- References -- 13: Electronic Noses and Tongue-Based Sensor Systems in Food Science -- 13.1 Introduction -- 13.2 Electronic Nose (e-nose) -- 13.2.1 Components of the Electronic Nose -- 13.2.1.1 Sensors and Chemicals -- Types of Sensors -- Metal Oxide Sensor (MOS). | |
Conducting Polymer Based Sensor. | |
Titolo autorizzato: | Nanosensing and bioanalytical technologies in food quality control |
ISBN: | 981-16-7028-5 |
981-16-7029-3 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910743338803321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |