Vai al contenuto principale della pagina

Flying ad hoc networks : cooperative networking and resource allocation / / Jingjing Wang, Chunxiao Jiang



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Wang Jingjing <active 2014-> Visualizza persona
Titolo: Flying ad hoc networks : cooperative networking and resource allocation / / Jingjing Wang, Chunxiao Jiang Visualizza cluster
Pubblicazione: Singapore : , : Springer, , [2022]
©2022
Descrizione fisica: 1 online resource (297 pages)
Disciplina: 629.1326
Soggetto topico: Drone aircraft - Control systems
Vehicular ad hoc networks (Computer networks)
Persona (resp. second.): JiangChunxiao <1987->
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Intro -- Preface -- Contents -- Acronyms -- 1 Introduction of Flying Ad Hoc Networks -- 1.1 Basic Classification and Regulation of UAVs -- 1.2 Differences Between FANET, VANET, MANET, and AANET -- 1.3 Compelling Applications of FANET -- References -- 2 Communication Channels in FANET -- 2.1 UAV Communication Channel Characteristics -- 2.1.1 UAV Link Budget -- 2.1.2 UAV Channel Fading -- 2.1.3 Channel Impulse Response and Metrics -- 2.2 UAV Communication Channel Modeling -- 2.2.1 Air-to-Ground Channels -- 2.2.1.1 A2G Channels in Urban Areas -- 2.2.1.2 Low-Altitude Channels in Cellular Networks -- 2.2.1.3 A2G Channels in Rural and Over-Water Areas -- 2.2.1.4 Evaporation Duct for Over Sea -- 2.2.1.5 Aircraft Shadowing in A2G Channels -- 2.2.2 Air-to-Air Channels -- 2.2.3 UAV-MIMO Channels -- 2.2.3.1 UAV-MIMO Channel Modeling -- 2.2.3.2 Antenna Diversity -- 2.2.3.3 Spatial Multiplexing -- 2.3 Challenges and Open Issues -- 2.3.1 Antennas for UAV Channel Measurement -- 2.3.2 Channels of UAV Applications in IoT and 5G -- 2.3.3 Channels in Vertical Industrial Applications -- 2.3.4 Channels of UAV FSO Communications -- References -- 3 Seamless Coverage Strategies of FANET -- 3.1 Introduction of Seamless Coverage Problems -- 3.1.1 Problem Domain and Challenges -- 3.1.2 State of the Art -- 3.2 UAV Seamless Coverage Strategy for Dense Urban Areas -- 3.2.1 System Model -- 3.2.2 Cyclic Recharging and Reshuffling Optimization -- 3.2.2.1 UAV Power Model -- 3.2.2.2 CRRS Constraint -- 3.2.3 Problem Formulation -- 3.2.4 Distributed Particle Swarm Optimization Aided Solution -- 3.2.4.1 Analysis and Simplification -- 3.2.4.2 Distributed-PSO Algorithm Design -- 3.2.4.3 Algorithmic Convergence Analysis -- 3.2.4.4 Algorithmic Complexity Analysis -- 3.2.5 Simulation Results -- 3.2.6 Conclusions -- 3.3 UAV Seamless Coverage Strategy for QoS-Guaranteed IoT.
3.3.1 System Model -- 3.3.2 Problem Formulation -- 3.3.3 Block Coordinate Descent Based Joint Optimization -- 3.3.3.1 Node Assignment Scheduling -- 3.3.3.2 UAV Trajectory Planning -- 3.3.3.3 UAV Transmit Power Control -- 3.3.3.4 Algorithmic Architecture and Convergence Analysis -- 3.3.4 Simulation Results -- 3.3.4.1 Resulting Strategies -- 3.3.4.2 Energy Efficiency -- 3.3.4.3 Optimality Analysis -- 3.3.5 Conclusions -- 3.4 UAV Seamless Coverage Strategy for Minimum-Delay Placement -- 3.4.1 System Model -- 3.4.1.1 Physical Layer Model of the UAV-Enabled Network -- 3.4.1.2 Queuing Model and System Dynamics -- 3.4.1.3 ABS Placement Scheduling -- 3.4.2 Problem Formulation -- 3.4.3 Markov Decision Process Transformation -- 3.4.3.1 Constrained Markov Decision Process -- 3.4.3.2 The Lagrangian Approach -- 3.4.4 Backward Induction and R-Learning Based Optimization -- 3.4.4.1 Solution to the Problem in Case 1 -- 3.4.4.2 Solution to the Problem in Case 2 -- 3.4.4.3 Solution to the Problem in Case 3 -- 3.4.4.4 Analysis of Computational Complexity -- 3.4.5 Simulation Results -- 3.4.5.1 Impact of the ABS' Total Energy -- 3.4.5.2 Impact of the Asymmetry Wireless Tele-Traffic -- 3.4.5.3 Impact of the Wireless Tele-Traffic Rate -- 3.4.5.4 Impact of the Ground Devices' Location -- 3.4.6 Conclusions -- 3.4.7 The Proof of Theorem 1 -- References -- 4 Cooperative Resource Allocation in FANET -- 4.1 Introduction of Cooperative Resource Allocation Problems -- 4.1.1 Problem Domain and Challenges -- 4.1.2 State of the Art -- 4.2 UAV Position Control with Interference -- 4.2.1 System Model -- 4.2.2 Problem Formulation -- 4.2.2.1 Constraints -- 4.2.2.2 Uplink Resource Allocation Formulation -- 4.2.3 Hovering Altitude and Power Control Solution -- 4.2.3.1 Stage 1: Joint Subchannel and Power Control -- 4.2.3.2 Lagrangian Dual Decomposition Method.
4.2.3.3 Stage 2: Hovering Altitude Optimization -- 4.2.3.4 Joint Hovering Altitude and Power Control -- 4.2.3.5 Algorithm Implementation -- 4.2.3.6 Supplementary Analysis -- 4.2.4 Simulation Results -- 4.2.5 Conclusions -- 4.3 UAV Trajectory Design for Space-Air-Ground Networks -- 4.3.1 System Model -- 4.3.2 Problem Formulation -- 4.3.3 The Solution for Optimization Problem -- 4.3.3.1 Smart Devices Connection Scheduling Optimization -- 4.3.3.2 Power Control Optimization -- 4.3.3.3 The UAV Trajectory Optimization -- 4.3.3.4 Optimization of Joint Smart Device Connection Scheduling, Power Control, and UAV Trajectory Design -- 4.3.3.5 Computational Complexity Analysis -- 4.3.4 Simulation Results -- 4.3.5 Conclusions -- 4.4 Multi-UAV-Aided IoT NOMA Uplink Transmission -- 4.4.1 System Model -- 4.4.1.1 Channel Model -- 4.4.1.2 Interference Model -- 4.4.2 Problem Formulation -- 4.4.3 IoT Nodes Clustering and Subchannel Assignment -- 4.4.4 Power Allocation and Flight Height Design -- 4.4.4.1 Power Allocation Design of IoT Nodes -- 4.4.4.2 Flight Heights Design of UAVs -- 4.4.4.3 Joint Power Allocation and Flight Height Optimization -- 4.4.5 Simulation Results -- 4.4.6 Conclusions -- References -- 5 Mobile Edge Computing in FANET -- 5.1 Introduction of Mobile Edge Computing Problems -- 5.1.1 Problem Domain and Challenges -- 5.1.2 State of the Art -- 5.2 Load-Balance Oriented UAV-Aided Edge Computing -- 5.2.1 System Model -- 5.2.1.1 Network Model -- 5.2.1.2 Communication Model -- 5.2.1.3 Computation Model -- 5.2.2 Problem Formulation -- 5.2.3 Joint UAV Deployment and Task Scheduling -- 5.2.3.1 Load Balance for UAVs -- 5.2.3.2 GAP Based Node Assignment -- 5.2.3.3 Deep Reinforcement Learning Aided Task Scheduling -- 5.2.3.4 Differential Evolution Based Multi-UAV Deployment -- 5.2.4 Simulation Results -- 5.2.5 Conclusions.
5.3 Latency and Reliability Guaranteed UAV-Aided Edge Computing -- 5.3.1 System Model -- 5.3.1.1 Joint Communications and Computing Optimization -- 5.3.2 Problem Formulation -- 5.3.3 Hybrid Binary Particle Swarm Optimization -- 5.3.4 Simulation Results -- 5.3.5 Conclusions -- 5.4 Energy-Efficient and Secure UAV-Aided Edge Computing -- 5.4.1 System Model -- 5.4.1.1 Local-Computing Model -- 5.4.1.2 Jamming Model -- 5.4.1.3 Secure Offloading Model -- 5.4.1.4 Edge Computing Model -- 5.4.2 Problem Formulation -- 5.4.2.1 Problem 1: Active Eavesdropper -- 5.4.2.2 Problem 2: Passive Eavesdropper -- 5.4.3 Energy-Efficient Secure UMEC Solution -- 5.4.3.1 Case 1: Active Eavesdropper -- 5.4.3.2 Case 2-1: Passive Eavesdropper at a Fixed Location -- 5.4.3.3 Case 2-2: Passive Eavesdropper at a Random Location -- 5.4.3.4 Optimal Offloading Strategy for the Secure UMEC -- 5.4.4 Analysis of Offloading and Computation -- 5.4.4.1 Zero Offloading -- 5.4.4.2 Full Offloading -- 5.4.4.3 Partial Offloading -- 5.4.4.4 Computational Overload -- 5.4.5 Simulation Results -- 5.4.5.1 Selection of Offloading Options -- 5.4.5.2 Impact of SOP Requirements -- 5.4.5.3 Impact of the UAV's Altitude and of the Eavesdropper's Location -- 5.4.6 Conclusions -- 5.5 Transmit-Energy and Computation-Delay Optimization -- 5.5.1 System Model -- 5.5.1.1 The UAV Model -- 5.5.1.2 The Channel Model -- 5.5.1.3 Cloud Computation Model -- 5.5.1.4 Edge Cloud -- 5.5.1.5 Remote Cloud -- 5.5.2 Energy-Efficient Gateway Selection -- 5.5.2.1 The Communication Model Analysis -- 5.5.2.2 Required Transmission Time and Energy Consumption -- 5.5.2.3 An Energy-Efficient Gateway Selection Scheme -- 5.5.3 Task Scheduling and Resource Allocation Scheme -- 5.5.3.1 Average Power Consumption and Cloud Execution Delay -- 5.5.3.2 Task Scheduling and Resource Allocation Scheme Based on Lyapunov Optimization.
5.5.3.3 A Low-Complexity Iterative Algorithm -- 5.5.4 Simulation Results -- 5.5.4.1 Performance of Gateway Selection Scheme -- 5.5.4.2 Performance of Task Scheduling and Resource Allocation scheme -- 5.5.5 Conclusions -- References.
Titolo autorizzato: Flying ad hoc networks  Visualizza cluster
ISBN: 981-16-8849-4
981-16-8850-8
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910743256003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Wireless networks (Springer (Firm))