Vai al contenuto principale della pagina

Solitons / / edited by Mohamed Atef Helal



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Solitons / / edited by Mohamed Atef Helal Visualizza cluster
Pubblicazione: New York, NY : , : Springer US : , : Imprint : Springer, , 2022
Edizione: 1st ed. 2022.
Descrizione fisica: 1 online resource (483 pages)
Disciplina: 530.124
Soggetto topico: Plasma waves
Mathematical physics
Differential equations
Environmental sciences
Physics
Fluid mechanics
Waves, instabilities and nonlinear plasma dynamics
Mathematical Methods in Physics
Differential Equations
Environmental Physics
Engineering Fluid Dynamics
Persona (resp. second.): HelalMohamed Atef
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Nonlinear Water Waves and Nonlinear Evolution Equations with Applications -- Inverse Scattering Transform and the Theory of Solitons -- Korteweg-de Vries Equation (KdV), Different Analytical Methods for Solving the -- Korteweg-de Vries Equation (KdV), History, Exact N-Soliton Solutions and Further Properties of the -- Semi-analytical Methods for Solving the KdV and mKdV Equations -- Korteweg-de Vries Equation (KdV), Some Numerical Methods for Solving the -- Nonlinear Internal Waves -- Partial Differential Equations that Lead to Solitons -- Shallow Water Waves and Solitary Waves -- Soliton Perturbation -- Solitons and Compactons -- Solitons: Historical and Physical Introduction -- Solitons Interactions -- Solitons, Introduction to -- Tsunamis and Oceanographical Applications of Solitons.
Sommario/riassunto: This newly updated volume of the Encyclopedia of Complexity and Systems Science (ECSS) presents several mathematical models that describe this physical phenomenon, including the famous non-linear equation Korteweg-de-Vries (KdV) that represents the canonical form of solitons. Also, there exists a class of nonlinear partial differential equations that led to solitons, e.g., Kadomtsev-Petviashvili (KP), Klein-Gordon (KG), Sine-Gordon (SG), Non-Linear Schrödinger (NLS), Korteweg-de-Vries Burger’s (KdVB), etc. Different linear mathematical methods can be used to solve these models analytically, such as the Inverse Scattering Transformation (IST), Adomian Decomposition Method, Variational Iteration Method (VIM), Homotopy Analysis Method (HAM) and Homotopy Perturbation Method (HPM). Other non-analytic methods use the computational techniques available in such popular mathematical packages as Mathematica, Maple, and MATLAB. The main purpose of this volume is to provide physicists, engineers, and their students with the proper methods and tools to solve the soliton equations, and to discover the new possibilities of using solitons in multi-disciplinary areas ranging from telecommunications to biology, cosmology, and oceanographic studies.
Titolo autorizzato: Solitons  Visualizza cluster
ISBN: 9781071624579
9781071624562
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910624315703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Encyclopedia of Complexity and Systems Science Series, . 2629-2343