Vai al contenuto principale della pagina

Climate change and agriculture : perspectives, sustainability and resilience / / Noureddine Benkeblia



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Climate change and agriculture : perspectives, sustainability and resilience / / Noureddine Benkeblia Visualizza cluster
Pubblicazione: Hoboken, NJ, USA : , : Wiley, , 2023
©2023
Descrizione fisica: 1 online resource (xv, 479 pages) : illustrations
Disciplina: 630
Soggetto topico: Crops and climate
Agriculture - Environmental aspects
Sustainable agriculture
Climatic changes
Soggetto genere / forma: Electronic books.
Persona (resp. second.): BenkebliaNoureddine
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Foreword -- Chapter 1 Climate Change and Agriculture: State of the Art, Challenges, and Perspectives -- 1.1 Introduction -- 1.2 Climate Change: A Global Perspective -- 1.3 Climate Change and Food Security -- 1.4 Ancestries of GHGs and Global Warming -- 1.5 Intensification of Global Health Issues with Climate Change -- 1.5.1 Healthy Life with Healthy Climate -- 1.6 Climate Change Intensify Water Scarcity -- 1.7 Variation in Available Surface Water -- 1.8 Climate Change and Soil Resources -- 1.9 Relation of World Trade to Climate Change -- 1.10 Anthropogenic Activities Ameliorate Climate Change -- 1.11 Relationship of Carbon and Water Cycle with Climate Change -- 1.11.1 Water and Carbon Cycle -- 1.11.2 The Water Cycle -- 1.12 Impacts of Climate Change on Water and Carbon Cycles -- 1.12.1 Impacts on Carbon Cycle -- 1.12.2 Impacts on Global Carbon Cycle -- 1.13 Conclusion -- 1.14 Summary -- References -- Chapter 2 Climate-Smart Plants Combat Climate Change and Liability for Food Security -- 2.1 Introduction -- 2.2 Climate Change, Adaptability, and Ecology of Legumes Crop -- 2.3 Role of Legumes in Body Health Maintenance -- 2.3.1 Legumes in Diet Can Help in Cardiovascular Health Stimulation (Legumes and Soybean) -- 2.3.2 Legumes and Recovery of Digestive Health and Prevent Colon Cancer -- 2.4 Climate Change and Legume Productivity and Profitability -- 2.4.1 Short-Duration, High-Yielding Varieties -- 2.4.2 Improved Varieties with Drought Tolerance -- 2.5 New Niches -- 2.5.1 Faba Bean -- 2.5.2 Pea -- 2.5.3 Intercropping and Relay Intercropping -- 2.5.4 Mung Bean -- 2.5.5 Adzuki Bean -- 2.6 Advance Legumes Production Technology -- 2.6.1 Seed Inoculum -- 2.6.2 Method of Inoculation -- 2.6.3 Method of Sowing -- 2.6.4 Time of Sowing (Kharif Legumes/Rabi Legumes).
2.6.5 Seed Rate -- 2.6.6 Irrigation -- 2.6.7 Weed Management -- 2.6.8 Preventive Measures -- 2.7 Diseases and Insect Pest of Legumes and Their Control -- 2.8 Disease Management Program Should Include the Following Methods -- 2.8.1 Preventive Measures -- 2.8.2 Cultural Control -- 2.8.3 Chemical Control -- 2.8.4 BioControl -- 2.8.5 Cultural Control -- 2.8.6 Chemical Control -- 2.9 Harvesting and Threshing -- 2.10 Yield -- 2.11 Storage -- 2.12 Marketing -- 2.13 Advantages of Legume Planting -- 2.14 Conclusions -- 2.15 Summary -- References -- Chapter 3 Adapting Crops to Climate Change -- 3.1 Introduction -- 3.2 Potential of Genomics-Assisted Breeding in Producing Climate-Resilient Crops -- 3.3 Genomics of Climate-Resilient Crops -- 3.3.1 Cereals -- 3.3.2 Oilseeds and Pulses -- 3.3.3 Millets -- 3.3.4 Forest and Fruit Tree Crops -- 3.4 Genomics-Assisted Breeding Strategies for Climate-Resilient Traits -- 3.5 Flowering Time and Drought Adaptation -- 3.6 Tolerance for Heat and Cold Stress -- 3.7 Salinity and Submergence Tolerance -- 3.8 Tools of Genetic Engineering to Target Mutagenesis -- 3.9 Conclusion -- 3.10 Summary -- References -- Chapter 4 Role of Biotechnology in Climate-Resilient Agriculture -- 4.1 Crop Yield Sensitivity to Climatic Variability as the Basis for Creating Climate Resilient Agriculture -- 4.2 Role of Biotechnology for Breeding Climate Resilient Varieties of Field Crops -- 4.2.1 Genetic Engineering -- 4.2.2 Genome Editing -- 4.2.3 Molecular Breeding -- 4.3 Conclusion -- 4.4 Summary -- References -- Chapter 5 Breeding Crops for Tolerance to Salinity, Heat, and Drought -- 5.1 Genetic Engineered Plants for Stress Tolerance -- 5.2 Genome Selection (GS) for Crop Improvement -- 5.3 Bio Molecular Intervention in Understanding Plant Adaptation to Climate Change -- 5.3.1 Drought -- 5.3.2 Salinity -- 5.3.3 Heat -- 5.4 Conclusion -- 5.5 Summary.
References -- Chapter 6 Innovative Approaches in the Breeding of Climate-Resilient Crops -- 6.1 Importance to Adapt Crops to New and Changing Environments -- 6.2 Utilizing Existing and Creating New Genetic Variability -- 6.2.1 Target Crossings with Existing Gene Pools -- 6.2.2 Induced Mutations -- 6.2.3 Phenomics -- 6.3 Development of Climate Resilience in Major Crops -- 6.3.1 Maize -- 6.3.2 Small Grains -- 6.3.3 Oil Crops -- 6.4 Genomics Strategies for the Development of Climate Resilient Crops -- 6.4.1 QTL Mapping and MAS -- 6.4.2 Genome-Wide Association Studies and Genomic Selection -- 6.4.3 Epigenomics -- 6.4.4 Integration of -Omics Technologies -- 6.4.5 Genome Editing -- 6.5 Biometrical Tools for Envirotyping -- 6.5.1 Phenotypic Data Analysis and GE Interaction -- 6.5.2 Genomic Prediction Modelling -- 6.6 Final Remarks -- 6.7 Summary -- Acknowledgment -- References -- Chapter 7 Challenges of Soil Fertility Under Changing Climate and Its Opposing Components -- 7.1 Introduction -- 7.2 Soil Productivity and Soil Health with Climate Change -- 7.3 No Life on Earth Without Soil Biota -- 7.4 Exogenous Application of Beneficial Microbes -- 7.5 Plants and Microbe are Thick as Thieves -- 7.6 Emerging Trends of Biofertilization -- 7.7 Microorganisms Convert Soil Carbon into Stable Forms -- 7.8 Soil Microbes and Carbon, Nitrogen Cycles -- 7.9 Biofertilizer Act as a Suppressing Agent for Pests and Pathogens -- 7.10 Beneficial Microbes Application Enhance Nitrogen Capturing and Fixation -- 7.11 Beneficial Microbe's Application Improve Soil Structure -- 7.12 Beneficial Microbe's Application Digest Nutrients in the Soil -- 7.13 Beneficial Microbes' Application Preventing Diseases and Pests Attack -- 7.14 Beneficial Microbes Application Create Organic Matter for Soil -- 7.15 Biofertilizers, Nutrients Availability, and Crop Responses.
7.15.1 Biofertilizers and Cereal Crops -- 7.15.2 Biofertilizers and Pulses -- 7.16 PSB on Crop Production -- 7.17 Mycorrhizas and Crop Production -- 7.18 Conclusion -- 7.19 Summary -- References -- Chapter 8 The Declining Trend of Soil Fertility with Climate Change and Its Solution -- 8.1 Introduction -- 8.2 Possible Changes in Imposing Variables -- 8.3 Processes and Mineralogical Change in Soils -- 8.4 Effects of Higher CO2 on Soil Fertility, Physical Conditions, and Productivity -- 8.5 Effects of Rainfall and Temperature Changes in Different Climates -- 8.6 Some Properties of Clay Surfaces -- 8.7 Resilience Against Physical and Chemical Soil Degradation -- 8.8 Resilience Against Soil Reduction (Anoxic Conditions) -- 8.9 Soil Reaction (pH) -- 8.10 Effects of a Rising Sea Level on Soils in Coastal Areas -- 8.11 Conclusions -- 8.12 Summary -- References -- Chapter 9 Nano-Black Carbon Is an Organic Tool for the Alleviation of Abiotic Stresses and Its Certain Damages Under Changing Climate -- 9.1 Introduction -- 9.2 Salinity Stress Mitigation with Nano-Black Carbon -- 9.3 Plant Wilting Stress Mitigation with Nano-Black Carbon Amendments -- 9.4 Relationship of Soil Microbiota with Nano-Black Carbon -- 9.5 Nutrients Stress Mitigation with Nano-Black Carbon -- 9.6 Plant's Development of Nano-Black Carbon Amendments -- 9.7 Nano-Black Carbon Application and Phosphate Starvation in Plants -- 9.8 Conclusion -- 9.9 Summary -- References -- Chapter 10 Biological Nitrogen Fixation in Nonlegume Plants and Changing Climate -- 10.1 Introduction -- 10.2 Nitrogen Fixation and Sustainable Agriculture -- 10.3 Key Features in Achieving N2-Fixing Activity -- 10.3.1 The Nitrogenase Reaction -- 10.3.2 The Energy Requirement -- 10.3.3 Sensitivity to Oxygen -- 10.4 Evolution of N2-Fixing Symbiosis -- 10.5 Association of Diazotrophs with Nonlegumes.
10.6 Application of Microbial Inoculations -- 10.7 Conclusion -- 10.8 Summary -- References -- Chapter 11 Role of Phosphorus in Imparting Abiotic Stress Tolerance to Plants -- 11.1 Introduction -- 11.2 Importance of Phosphorus (P) in Plant Metabolism -- 11.3 Phosphorus (P) Stress and Plant Growth -- 11.4 Phosphorus (P) Availability in Soil -- 11.5 P Accumulation and Use Efficiency -- 11.6 Phosphorus and Drought Stress -- 11.6.1 P Availability in Soil Under Drought -- 11.6.2 Drought Tolerance by P Fertilization -- 11.7 Phosphorus and Excess Moisture Stress -- 11.7.1 P Availability in Soil Under Excess Moisture -- 11.7.2 Excess Moisture Tolerance by P Fertilization -- 11.8 Phosphorus and Temperature Stress (Low/Chilling Temperature Stress, High Temperature Stress) -- 11.8.1 P Availability in Soil Under High/Low Rhizosphere Temperature -- 11.8.2 Physiological Changes in Plants at Membrane Level Due to Temperature Stress -- 11.8.3 Temperature Tolerance by P Fertilization -- 11.9 Phosphorus and High CO2 -- 11.9.1 Impact of P Nutrition Under Excess CO2 -- 11.9.2 P Availability in Soil Under High CO2 -- 11.10 Phosphorus and Salinity Stress -- 11.10.1 P Availability in Saline Soil -- 11.10.2 Salinity Tolerance by P Fertilization -- 11.11 Conclusion and Future Work -- 11.12 Summary -- References -- Chapter 12 Climate Change and Cereal Production -- 12.1 Introduction -- 12.2 Weather and Climate -- 12.3 Distribution and Production of Cereals -- 12.4 Effects of Climate Change on Cereals -- 12.4.1 Crops and Temperature -- 12.4.2 UV Radiation -- 12.4.3 Carbon Dioxide -- 12.4.4 Pest Attack -- 12.5 Introduction and Climate Change Scenario in Cereals -- 12.5.1 Rice (Oryza sativa) -- 12.5.2 Maize (Zea mays L.) -- 12.6 Effects of Climate Change on Cereal Production -- 12.7 Climate Change Impact on Crops Yield and Food Security -- 12.7.1 Paddy (Oryza sativa).
12.7.2 Maize (Zea mays L.).
Sommario/riassunto: "Our climate is continuously heating up and the impacts of global warming (GW) and green house gas (GHG) grow more frequent and severe. Consequently, farmers and agroecosystems around the world started to become increasingly challenged. Climate change will cause more flooding in many regions of the world, severe drought in other regions; will affect crop and livestock viability, and also new pests, pathogens, and weed problems. Therefore, agriculture is required to shift to a more sustainable and resilient system to cope with these changes, mitigate impacts caused by these changes, and feed the growing population. This book will look at how to develop sustainable agriculture in its broad and targeted sense under the conditions of a changing climate. It will cover different disciplines attracting interests from the scientific community involved in the development of sustainable agroecosystems and cropping systems, and detail how to improve the resilience of cultivated crops and cropping systems to the adverse conditions of the climate, such as drought, raising carbon dioxide, global warming and many other secondary effects such as soils fertility depletion, uncommon disease and pests. This book will report on agricultural practices and agroecosystems and how they will cope with the changing climate; the modification and enhancement of crop production practices to harnessing the potential changes caused by the changing climate and mitigate its impacts on the agroecosystems and crops production"--
Titolo autorizzato: Climate Change and Agriculture  Visualizza cluster
ISBN: 1-119-78978-8
1-119-78976-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910623988603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui