Vai al contenuto principale della pagina

Time Series Models / / by Manfred Deistler, Wolfgang Scherrer



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Deistler M (Manfred) Visualizza persona
Titolo: Time Series Models / / by Manfred Deistler, Wolfgang Scherrer Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Edizione: 1st ed. 2022.
Descrizione fisica: 1 online resource (213 pages)
Disciplina: 519.55
Soggetto topico: Time-series analysis
Stochastic processes
Econometrics
Statistics
Signal processing
Time Series Analysis
Stochastic Processes
Statistical Theory and Methods
Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences
Signal, Speech and Image Processing
Anàlisi de sèries temporals
Soggetto genere / forma: Llibres electrònics
Persona (resp. second.): ScherrerWolfgang
Note generali: Includes index.
Nota di contenuto: Preface -- 1 Time Series and Stationary Processes -- 2 Prediction -- 3 Spectral Representation -- 4 Filter -- 5 Autoregressive Processes -- 6 ARMA Systems and ARMA Processes -- 7 State-Space Systems -- 8 Models with Exogenous Variables -- 9 Granger Causality -- 10 Dynamic Factor Models -- 10 ARCH and GARCH Models -- Index.
Sommario/riassunto: This textbook provides a self-contained presentation of the theory and models of time series analysis. Putting an emphasis on weakly stationary processes and linear dynamic models, it describes the basic concepts, ideas, methods and results in a mathematically well-founded form and includes numerous examples and exercises. The first part presents the theory of weakly stationary processes in time and frequency domain, including prediction and filtering. The second part deals with multivariate AR, ARMA and state space models, which are the most important model classes for stationary processes, and addresses the structure of AR, ARMA and state space systems, Yule-Walker equations, factorization of rational spectral densities and Kalman filtering. Finally, there is a discussion of Granger causality, linear dynamic factor models and (G)ARCH models. The book provides a solid basis for advanced mathematics students and researchers in fields such as data-driven modeling, forecasting and filtering, which are important in statistics, control engineering, financial mathematics, econometrics and signal processing, among other subjects.
Titolo autorizzato: Time Series Models  Visualizza cluster
ISBN: 3-031-13213-0
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910620195703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Statistics, . 2197-7186 ; ; 224