Vai al contenuto principale della pagina

Simplifying Medical Ultrasound : Third International Workshop, ASMUS 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings / / edited by Stephen Aylward, J. Alison Noble, Yipeng Hu, Su-Lin Lee, Zachary Baum, Zhe Min



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Simplifying Medical Ultrasound : Third International Workshop, ASMUS 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings / / edited by Stephen Aylward, J. Alison Noble, Yipeng Hu, Su-Lin Lee, Zachary Baum, Zhe Min Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Edizione: 1st ed. 2022.
Descrizione fisica: 1 online resource (202 pages)
Disciplina: 616.07543
Soggetto topico: Image processing - Digital techniques
Computer vision
Computer engineering
Computer networks
Artificial intelligence
Application software
Computer Imaging, Vision, Pattern Recognition and Graphics
Computer Engineering and Networks
Artificial Intelligence
Computer and Information Systems Applications
Persona (resp. second.): AylwardStephen Ronald
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Classification and Detection -- Rapid Lung Ultrasound COVID-19 Severity Scoring with Resource-Efficient Deep Feature Extraction -- Spatio-temporal model for EUS video detection of Pancreatic Anatomy Structures -- RL based Unsupervised Video Summarization framework for Ultrasound Imaging -- Prediction of Kidney Transplant Function with Machine Learning from Computational Ultrasound Features -- Differential Learning from Sparse and Noisy Labels for Robust Detection of Clinical Landmarks in Echo Cine Series -- End-to-End Myocardial Infarction Classification from Echocardiographic Scans -- View Classification of Color Doppler Echocardiography via Automatic Alignment between Doppler and B-mode Imaging -- Segmentation and Reconstruction -- AI-enabled Assessment of Cardiac Systolic and Diastolic Function from Echocardiography -- 3D Cardiac Anatomy Reconstruction from 2D Segmentations: a Study using Synthetic Data -- Left Ventricle Contouring of Apical Three-Chamber Views on 2D Echocardiography -- Adnexal Mass Segmentation with Ultrasound Data Synthesis -- Self-Knowledge Distillation for First Trimester Ultrasound Saliency Prediction -- A Universal End-to-End Universal Description of Pulse-Echo Ultrasound Image Reconstruction -- Assessment, Guidance and Robotics -- Learning Generalized Non-Rigid Multimodal Biomedical Image Registration from Generic Point Set Data -- Contact force Prediction for a Robotic Transesophageal Ultrasound Probe via Operating Torque Sensing -- Meta-Registration: Learning Test-Time Optimization for Single-Pair Image Registration -- Automatic Quality Assessment of First Trimester Crown-Rump-Length Ultrasound Images -- Towards Multi-Modal Self-Supervised Video and Ultrasound Pose Estimation for Laparoscopic Liver Surgery.
Sommario/riassunto: Chapters "Left Ventricle Contouring of Apical Three-Chamber Views on 2D Echocardiography" and "3D Cardiac Anatomy Reconstruction from 2D Segmentations: a Study using Synthetic Data" are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Titolo autorizzato: Simplifying Medical Ultrasound  Visualizza cluster
ISBN: 9783031169021
3031169026
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910595048303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Computer Science, . 1611-3349 ; ; 13565