Vai al contenuto principale della pagina
Autore: | Pintelas Panagiotis E |
Titolo: | Ensemble Algorithms and Their Applications |
Pubblicazione: | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
Descrizione fisica: | 1 electronic resource (182 p.) |
Soggetto topico: | Information technology industries |
Persona (resp. second.): | LivierisIoannis E |
PintelasPanagiotis E | |
Sommario/riassunto: | In recent decades, the development of ensemble learning methodologies has gained a significant attention from the scientific and industrial community, and found their application in various real-word problems. Theoretical and experimental evidence proved that ensemble models provide a considerably better prediction performance than single models. The main aim of this collection is to present the recent advances related to ensemble learning algorithms and investigate the impact of their application in a diversity of real-world problems. All papers possess significant elements of novelty and introduce interesting ensemble-based approaches, which provide readers with a glimpse of the state-of-the-art research in the domain. |
Titolo autorizzato: | Ensemble Algorithms and Their Applications |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910557104303321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |