Vai al contenuto principale della pagina

The global cable industry : materials, markets, products / / editor, Günter Beyer



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: The global cable industry : materials, markets, products / / editor, Günter Beyer Visualizza cluster
Pubblicazione: Weinheim, Germany : , : Wiley-VCH, , [2021]
©2021
Descrizione fisica: 1 online resource (xxv, 399 pages)
Disciplina: 621.31934
Soggetto topico: Electric cables
Soggetto genere / forma: Electronic books.
Persona (resp. second.): BeyerGünter <1952->
Nota di contenuto: Cover -- Title Page -- Copyright -- Contents -- About the Editor -- Chapter 1 Overview of the Global Cable Industry - Markets and Materials -- 1.1 Demand for Polymeric Material -- 1.1.1 Main Companies Profile -- 1.1.1.1 Prysmian -- 1.1.1.2 Nexans -- 1.1.1.3 Southwire -- 1.1.1.4 Sumitomo Electric Industries -- 1.1.1.5 Furukawa Electric Co., Ltd. -- 1.1.1.6 LS Cable & -- System -- 1.1.1.7 Leoni AG -- 1.1.1.8 Hengtong Group -- 1.1.2 Global Demand -- 1.2 Asia and Australasia -- 1.2.1 Demand for Cable -- 1.2.2 Demand for Polymeric Material -- 1.3 Europe -- 1.3.1 Demand for Cables -- 1.3.2 Demand for Polymeric Materials -- 1.4 The Middle East and Africa -- 1.4.1 Demand for Cables -- 1.4.2 Demand for Polymeric Materials -- 1.5 North America -- 1.5.1 Demand for Cables -- 1.5.2 Demand for Polymeric Materials -- 1.6 South and Central America -- 1.6.1 Demand for Cables -- 1.6.2 Demand for Polymeric Materials -- Chapter 2 Thermoplastics for Cables -- 2.1 Introduction -- 2.2 Polyolefin Materials -- 2.2.1 Polyethylene -- 2.2.1.1 Manufacturing Processes -- 2.2.1.2 Cable Applications -- 2.2.2 Polypropylene (PP) -- 2.2.2.1 Manufacturing Processes -- 2.2.2.2 Applications -- 2.3 Chlorinated Polymers -- 2.3.1 Polyvinylchloride (PVC) -- 2.3.2 Chlorinated Polyethylene (CPE) -- 2.4 Fluoropolymers -- 2.4.1 Fluoro‐Ethylene Propylene polymer -- 2.4.2 Polytetrafluoroethylene (PTFE), Ethylene Tetrafluoroethylene (ETFE), and Perfluoroalkoxy Polymer (PFA). -- 2.4.3 Ethylene Chlorotrifluoroethylene (ECTFE) -- 2.4.4 Polyvinyldifluoride (PVDF) -- 2.5 Polyamide (PA) -- 2.6 Polyesters -- 2.6.1 Polybutylphtherephtalate (PBT) -- 2.6.2 Polyester Elastomers -- 2.7 Thermoplastic Polyurethane -- References -- Chapter 3 Elastomers for Cables -- 3.1 Introduction -- 3.2 Rubber Compounds -- 3.2.1 Rubber -- 3.2.2 Fillers -- 3.2.3 Plasticizer -- 3.2.4 Stabilizers.
3.2.5 Classical Cross‐linking Systems -- 3.2.5.1 Cross‐linking with Sulfur Systems -- 3.2.5.2 Cross‐linking with Peroxide Systems -- 3.2.5.3 Moving Die Rheometers (MDRs) -- 3.2.6 Other Cross‐linking Systems -- 3.2.6.1 Cross‐linking by Irradiation -- 3.2.6.2 Cross‐linking with Silanes -- 3.3 Compounding -- 3.4 Extrusion -- 3.5 Cross‐linking/Vulcanization -- 3.5.1 Vulcanization in Saturated Hot Water Steam -- 3.5.2 Vulcanization in Liquid Salt Mixtures under Pressure -- 3.5.3 Electron Beam Cross‐linking -- References -- Chapter 4 Extrusion of Cables -- 4.1 Historical Introduction to Cable Extrusion -- 4.2 Extruder in Cable Lines -- 4.2.1 Description of the Single Screw Extruder -- 4.2.1.1 Different Functional Screw Zones -- 4.2.1.2 Description of a Screw Geometry -- 4.2.2 Feeding Zone of the Extrusion Screw -- 4.2.2.1 Friction‐Based Feeding Mechanism -- 4.2.2.2 Simple Modeling of the Feeding Zone -- 4.2.2.3 Improvement of the Feeding Zone: Use of Helical Grooved Barrel -- 4.2.3 Thin Film Plastification -- 4.2.3.1 Melting on the Backside of Flight -- 4.2.3.2 Initiation of Liquid Film -- 4.2.3.3 Melt Flow Rate in the Liquid Film -- 4.2.3.4 Influence of Different Parameters on Melting Length -- 4.2.3.5 Thin Film Melting with the Help of a Barrier Zone -- 4.2.3.6 Barrier Zone, Its Advantages, and Its Drawbacks -- 4.2.4 Metering Zone -- 4.2.4.1 Representation of the Metering Zone -- 4.2.4.2 1D Analysis -- 4.2.5 Example of Results for 1D Model Including the Three Zones of the Screw -- 4.2.5.1 Influence of Friction Coefficients on the Screw Characteristics -- 4.2.5.2 Interaction Between Compression and Friction in the Feeding Zone -- 4.3 Accessories for Extruders -- 4.3.1 Mixing Zones -- 4.3.1.1 Observed Defaults -- 4.3.1.2 Devices Selection Criteria -- 4.3.1.3 Example of Results for Finathene HDPE -- 4.3.2 Melt Filtration Systems -- 4.3.3 Melt Gear Pumps.
4.4 Extrusion Heads or Dies -- 4.4.1 Description of the Extrusion Head -- 4.4.1.1 Extrusion Head Function -- 4.4.2 Distributors -- 4.4.2.1 Head with Coat Hanger Type Distribution Channels -- 4.4.2.2 Distribution Function Through Flattened Distribution Channels -- 4.4.2.3 Distributor with Helical Channels -- 4.4.3 Diameter Adaptation Function (Tooling) -- 4.4.3.1 Tube Tooling, DDR -- 4.4.3.2 Tube Tooling, DRB -- 4.4.4 Relation Between Pressure and Average Temperature Increase in an Extrusion Head -- 4.5 Cooling -- 4.5.1 Cooling Length Analytical Calculation for Fine Wires -- 4.5.2 Cooling Length Finite Difference Calculation for a Wire of Radius > -- 1 mm with Copper Core and PE Insulation -- 4.6 Quality -- 4.6.1 The Quality Parameter and Its Measurement -- 4.6.1.1 Diameter and Product Circularity Measurement -- 4.6.1.2 Concentricity Measurement -- 4.6.1.3 Insulation Defects Measurements (Cable or Wire) -- 4.6.1.4 Capacity Measurement (Telecommunication Wire) -- 4.6.1.5 Sheathing Wall Thickness Measurement -- 4.6.1.6 Periodicity of Measurement Analysis -- 4.6.2 Common Production Defects, Causes, and Remedies -- References -- Chapter 5 Foam Extrusion -- 5.1 Motivation -- 5.2 Physical Basics -- 5.3 Selection of Polymer -- 5.4 Selection of Blowing Agents -- 5.5 Extrusion Equipment -- 5.5.1 Extruder and Screw -- 5.5.2 Dosing Station -- 5.5.3 Gas Injection -- 5.5.4 Melt Transport from Screw to Die -- 5.5.5 Cooling Trough -- 5.5.6 Measurement Devices -- 5.6 Processing -- 5.6.1 Extrusion and Die Setup -- 5.6.2 Process Control Modes -- 5.6.3 PBA Handling -- 5.6.4 Maximum Void and Bubble Size -- 5.6.5 Inline Analysis by FFT -- Glossary -- References -- Chapter 6 Flame Retardancy of Cables -- 6.1 Introduction -- 6.2 Flame Propagation Tests for Wires and Cables -- 6.3 Smoke, Corrosivity, and Toxicity Tests for Wires and Cables.
6.4 Circuit Integrity and Functional Integrity for Security Cables -- 6.5 Laboratory Tests for the Flammability of Wire and Cable Materials -- 6.6 Polymers for Flame‐Retardant Wires and Cables -- 6.7 Flame Retardants for Flame‐Retardant Wires and Cables -- 6.8 Flame‐Retardant PVC -- 6.8.1 Flame Retardants for PVC and Flame‐Retardant PVC Cable Formulations -- 6.8.1.1 Phthalate‐Based Plasticizers and Other Plasticizers -- 6.8.1.2 Antimony Trioxide -- 6.8.1.3 Brominated Phthalate Plasticizers -- 6.8.1.4 Chlorinated Paraffins -- 6.8.1.5 Aluminum Hydroxide (ATH) and Magnesium Hydroxide (MDH) -- 6.8.1.6 Zinc Borate -- 6.8.1.7 Phosphate Plasticizers -- 6.8.1.8 Smoke Suppressants -- 6.8.1.9 Nanocomposites -- 6.9 Flame‐Retardant Polyolefins -- 6.9.1 Flame Retardants for Polyolefins and HFFR Cable Formulations -- 6.9.1.1 Aluminum Hydroxide (ATH) and Magnesium Hydroxide (MDH) -- 6.9.1.2 Zinc Borate and Polysiloxanes -- 6.9.1.3 Nanocomposites -- 6.9.1.4 Ceramifiable Compounds -- 6.10 CPR (Construction Products Regulation) -- References -- Chapter 7 CPR Testing of Cables -- 7.1 Introduction -- 7.2 FIPEC Program -- 7.2.1 FIPEC Approach -- 7.2.1.1 Real‐Scale Scenario -- 7.2.1.2 Cable Selection -- 7.2.1.3 Real‐Scale Fire Tests -- 7.2.1.4 Full‐Scale Fire Test -- 7.2.1.5 Capability Study -- 7.2.1.6 Correlation Between Real‐ and Large‐Scale Test -- 7.3 Construction Product Regulation (CPR) Framework -- 7.3.1 EN 13 501‐6 -- 7.3.2 EN ISO 1716 -- 7.3.3 EN 60332‐1‐2 -- 7.3.4 EN 50399 -- 7.3.5 EN ISO 61034‐1 (Apparatus) and ‐2 (Test Procedure) -- 7.3.6 EN 60754‐2 -- References -- 7.A Measure of the Heat Release Rate (HRR) by Oxygen Consumption Technique -- 7.A.1 Measure of the Heat Release Rate (HRR) by Oxygen Consumption Technique -- 7.A.1.1 Burning of Methane -- 7.A.1.2 Determination of theMass Flow Rate (ṁ a) -- 7.A.1.3 Smoke Opacity.
7.A.1.4 Calculation of FIGRA and SMOGRA Index -- Chapter 8 Crosslinking Technologies -- 8.1 Introduction -- 8.2 Crosslinking, Curing, Vulcanizing -- 8.3 Crosslinking Processes -- 8.4 The Silane‐Crosslinking Process -- 8.4.1 The Sioplas® Process -- 8.4.2 The Monosil® Process -- 8.4.3 Silane Copolymers -- 8.4.4 Reactivity of the Silane Crosslinking Process -- 8.4.5 Advantages and Disadvantages of Silane Crosslinking -- 8.5 The Peroxide Crosslinking Process (CV Curing) -- 8.5.1 Polymer Selection for Peroxide Crosslinking -- 8.5.2 Advantages and Disadvantages of Continuous Vulcanization -- 8.6 e‐Beam Crosslinking -- 8.6.1 Awareness of e‐Beams in Our Daily Life -- 8.6.2 The Principle of an e‐Beam -- 8.6.3 Creating a High Voltage e‐Beam -- 8.6.4 Scan Horn and Beam Window -- 8.6.5 Under‐Beam Handling System (UBHS) -- 8.6.6 Control System -- 8.6.7 Safety -- 8.6.7.1 Radiation and Radioactivity -- 8.6.7.2 Bremsstrahlung or X‐rays -- 8.6.7.3 Shielding and Radioactivity -- 8.6.7.4 Other Safety Systems -- 8.6.7.5 Ozone -- 8.6.7.6 IAEA -- 8.6.8 Most Important Parameters During e‐Beam Crosslinking -- 8.6.8.1 Voltage -- 8.6.8.2 Amperage -- 8.6.8.3 Radiation Dose -- 8.6.9 Capacity of an e‐Beam -- 8.6.9.1 Functional Capacity -- 8.6.9.2 Efficiency -- 8.6.9.3 Dose -- 8.6.10 Temperature Rise -- 8.6.11 Compound Design -- 8.6.11.1 Polymers -- 8.6.12 Costs Indications of e‐Beam Crosslinking -- 8.6.12.1 Annual Costs -- 8.6.12.2 Annual Throughput and Costs per Kilograms -- 8.6.13 Advantages and Disadvantages of e‐Beam Crosslinking -- 8.7 Conclusions -- Further Reading -- Silane Crosslinking -- Peroxide Crosslinking -- Electron‐Beam Crosslinking -- Hot‐Set‐Elongation -- Chapter 9 Nuclear Power Station Cables -- 9.1 Development of Nuclear Power in the World -- 9.1.1 Development Stage of Nuclear Power in the World.
9.1.2 Current Status of Nuclear Power Development All Over the World.
Titolo autorizzato: The global cable industry  Visualizza cluster
ISBN: 3-527-82227-5
3-527-82228-3
3-527-82226-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910555149203321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui