Vai al contenuto principale della pagina

3D and circuit integration of MEMS / / Masayoshi Esashi



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Esashi Masayoshi <1949-> Visualizza persona
Titolo: 3D and circuit integration of MEMS / / Masayoshi Esashi Visualizza cluster
Pubblicazione: Weinheim, Germany : , : Wiley-VCH, , [2021]
©2021
Descrizione fisica: 1 online resource (521 pages)
Disciplina: 621.381
Soggetto topico: Microelectromechanical systems
Soggetto genere / forma: Electronic books.
Nota di contenuto: Cover -- Title Page -- Copyright -- Contents -- Part I Introduction -- Chapter 1 Overview -- References -- Part II System on Chip -- Chapter 2 Bulk Micromachining -- 2.1 Process Basis of Bulk Micromachining Technologies -- 2.2 Bulk Micromachining Based on Wafer Bonding -- 2.2.1 SOI MEMS -- 2.2.2 Cavity SOI Technology -- 2.2.3 Silicon on Glass Processes: Dissolved Wafer Process (DWP) -- 2.3 Single‐Wafer Single‐Side Processes -- 2.3.1 Single‐Crystal Reactive Etching and Metallization Process (SCREAM) -- 2.3.2 Sacrificial Bulk Micromachining (SBM) -- 2.3.3 Silicon on Nothing (SON) -- References -- Chapter 3 Enhanced Bulk Micromachining Based on MIS Process -- 3.1 Repeating MIS Cycle for Multilayer 3D structures or Multi‐sensor Integration -- 3.1.1 Pressure Sensors with PS3 Structure -- 3.1.2 P+G Integrated Sensors -- 3.2 Pressure Sensor Fabrication - From MIS Updated to TUB -- 3.3 Extension of MIS Process for Various Advanced MEMS Devices -- References -- Chapter 4 Epitaxial Poly Si Surface Micromachining -- 4.1 Process Condition of Epi‐poly Si -- 4.2 MEMS Devices Using Epi‐poly Si -- References -- Chapter 5 Poly‐SiGe Surface Micromachining -- 5.1 Introduction -- 5.1.1 SiGe Applications in IC and MEMS -- 5.1.2 Desired SiGe Properties for MEMS -- 5.2 SiGe Deposition -- 5.2.1 Deposition Methods -- 5.2.2 Material Properties Comparison -- 5.2.3 Cost Analysis -- 5.3 LPCVD Polycrystalline SiGe -- 5.3.1 Vertical Furnace -- 5.3.2 Particle Control -- 5.3.3 Process Monitoring and Maintenance -- 5.3.4 In‐line Metrology for Film Thickness and Ge Content -- 5.3.5 Process Space Mapping -- 5.4 CMEMS® Process -- 5.4.1 CMOS Interface Challenges -- 5.4.2 CMEMS Process Flow -- 5.4.2.1 Top Metal Module -- 5.4.2.2 Plug Module -- 5.4.2.3 Structural SiGe Module -- 5.4.2.4 Slit Module -- 5.4.2.5 Structure Module -- 5.4.2.6 Spacer Module -- 5.4.2.7 Electrode Module.
5.4.2.8 Pad Module -- 5.4.3 Release -- 5.4.4 Al-Ge Bonding for Microcaps -- 5.5 Poly‐SiGe Applications -- 5.5.1 Resonator for Electronic Timing -- 5.5.2 Nano‐electro‐mechanical Switches -- References -- Chapter 6 Metal Surface Micromachining -- 6.1 Background of Surface Micromachining -- 6.2 Static Device -- 6.3 Static Structure Fixed after the Single Movement -- 6.4 Dynamic Device -- 6.4.1 MEMS Switch -- 6.4.2 Digital Micromirror Device -- 6.5 Summary -- References -- Chapter 7 Heterogeneously Integrated Aluminum Nitride MEMS Resonators and Filters -- 7.1 Overview of Integrated Aluminum Nitride MEMS -- 7.2 Heterogeneous Integration of Aluminum Nitride MEMS Resonators with CMOS Circuits -- 7.2.1 Aluminum Nitride MEMS Process Flow -- 7.2.2 Encapsulation of Aluminum Nitride MEMS Resonators and Filters -- 7.2.3 Redistribution Layers on Top of Encapsulated Aluminum Nitride MEMS -- 7.2.4 Selected Individual Resonator and Filter Frequency Responses -- 7.2.5 Flip‐chip Bonding of Aluminum Nitride MEMS with CMOS -- 7.3 Heterogeneously Integrated Self‐Healing Filters -- 7.3.1 Application of Statistical Element Selection (SES) to AlN MEMS Filters with CMOS Circuits -- 7.3.2 Measurement of 3D Hybrid Integrated Chip Stack -- References -- Chapter 8 MEMS Using CMOS Wafer -- 8.1 Introduction: CMOS MEMS Architectures and Advantages -- 8.2 Process Modules for CMOS MEMS -- 8.2.1 Process Modules for Thin Films -- 8.2.1.1 Metal Sacrificial -- 8.2.1.2 Oxide Sacrificial -- 8.2.1.3 TiN‐composite (TiN‐C) -- 8.2.2 Process Modules for the Substrate -- 8.2.2.1 SF6 and XeF2 (Dry Isotropic) -- 8.2.2.2 KOH and TMAH (Wet Anisotropic) -- 8.2.2.3 RIE and DRIE (Front‐side RIE, Backside DRIE) -- 8.3 The 2P4M CMOS Platform (0.35 µm) -- 8.3.1 Accelerometer -- 8.3.2 Pressure Sensor -- 8.3.3 Resonators -- 8.3.4 Others -- 8.4 The 1P6M CMOS Platform (0.18 µm) -- 8.4.1 Tactile Sensors.
8.4.2 IR Sensor -- 8.4.3 Resonators -- 8.4.4 Others -- 8.5 CMOS MEMS with Add‐on Materials -- 8.5.1 Gas and Humidity Sensors -- 8.5.1.1 Metal Oxide -- 8.5.1.2 Polymer -- 8.5.2 Biochemical Sensors -- 8.5.3 Pressure and Acoustic Sensors -- 8.5.3.1 Microfluidic Structures -- 8.6 Monolithic Integration of Circuits and Sensors -- 8.6.1 Multi‐sensor Integration -- 8.6.1.1 Gas Sensors -- 8.6.1.2 Physical Sensors -- 8.6.2 Readout Circuit Integration -- 8.6.2.1 Resistive Sensors -- 8.6.2.2 Capacitive Sensors -- 8.6.2.3 Inductive Sensors -- 8.6.2.4 Resonant Sensors -- 8.7 Issues and Concerns -- 8.7.1 Residual Stresses, CTE Mismatch, and Creep of Thin Films -- 8.7.1.1 Initial Deformation - Residual Stress -- 8.7.1.2 Thermal Deformation - Thermal Expansion Coefficient Mismatch -- 8.7.1.3 Long‐time Stability - Creep -- 8.7.2 Quality Factor, Materials Loss, and Temperature Stability -- 8.7.2.1 Anchor Loss -- 8.7.2.2 Thermoelastic Damping (TED) -- 8.7.2.3 Material and Interface Loss -- 8.7.3 Dielectric Charging -- 8.7.4 Nonlinearity and Phase Noise in Oscillators -- 8.8 Concluding Remarks -- References -- Chapter 9 Wafer Transfer -- 9.1 Introduction -- 9.2 Film Transfer -- 9.3 Device Transfer (via‐last) -- 9.4 Device Transfer (Via‐First) -- 9.5 Chip Level Transfer -- References -- Chapter 10 Piezoelectric MEMS -- 10.1 Introduction -- 10.1.1 Fundamental -- 10.1.2 PZT Thin Films Property as an Actuator -- 10.1.3 PZT Thin Film Composition and Orientation -- 10.2 PZT Thin Film Deposition -- 10.2.1 Sputtering -- 10.2.2 Sol-Gel -- 10.2.2.1 Orientation Control -- 10.2.2.2 Thick Film Deposition -- 10.2.3 Electrode Materials and Lifetime of PZT Thin Films -- 10.3 PZT-MEMS Fabrication Process -- 10.3.1 Cantilever and Microscanner -- 10.3.2 Poling -- References -- Part III Bonding, Sealing and Interconnection -- Chapter 11 Anodic Bonding -- 11.1 Principle -- 11.2 Distortion.
11.3 Influence of Anodic Bonding to Circuits -- 11.4 Anodic Bonding with Various Materials, Structures and Conditions -- 11.4.1 Various Combinations -- 11.4.2 Anodic Bonding with Intermediate Thin Films -- 11.4.3 Variation of Anodic Bonding -- 11.4.4 Glass Reflow Process -- References -- Chapter 12 Direct Bonding -- 12.1 Wafer Direct Bonding -- 12.2 Hydrophilic Wafer Bonding -- 12.3 Surface Activated Bonding at Room Temperature -- References -- Chapter 13 Metal Bonding -- 13.1 Solid Liquid Interdiffusion Bonding (SLID) -- 13.1.1 Au/In and Cu/In -- 13.1.2 Au/Ga and Cu/Ga -- 13.1.3 Au/Sn and Cu/Sn -- 13.1.4 Void Formation -- 13.2 Metal Thermocompression Bonding -- 13.2.1.1 Interface Formation -- 13.2.1.2 Grain Reorientation -- 13.2.1.3 Grain Growth -- 13.3 Eutectic Bonding -- 13.3.1 Au/Si -- 13.3.2 Al/Ge -- 13.3.3 Au/Sn -- References -- Chapter 14 Reactive Bonding -- 14.1 Motivation -- 14.2 Fundamentals of Reactive Bonding -- 14.3 Material Systems -- 14.4 State of the Art -- 14.5 Deposition Concepts of Reactive Material Systems -- 14.5.1 Physical Vapor Deposition -- 14.5.1.1 Conclusion Physical Vapor Deposition and Patterning -- 14.5.2 Electrochemical Deposition of Reactive Material Systems -- 14.5.2.1 Dual Bath Technology -- 14.5.2.2 Single Bath Technology -- 14.5.2.3 Conclusion DBT and SBT -- 14.5.3 Vertical Reactive Material Systems With 1D Periodicity -- 14.5.3.1 Dimensioning -- 14.5.3.2 Fabrication -- 14.5.3.3 Conclusion -- 14.6 Bonding With RMS -- 14.7 Conclusion -- References -- Chapter 15 Polymer Bonding -- 15.1 Introduction -- 15.2 Materials for Polymer Wafer Bonding -- 15.2.1 Polymer Adhesion Mechanisms -- 15.2.2 Properties of Polymers for Wafer Bonding -- 15.2.3 Polymers Used in Wafer Bonding -- 15.3 Polymer Wafer Bonding Technology -- 15.3.1 Process Parameters in Polymer Wafer Bonding -- 15.3.2 Localized Polymer Wafer Bonding.
15.4 Precise Wafer‐to‐Wafer Alignment in Polymer Wafer Bonding -- 15.5 Practical Examples of Polymer Wafer Bonding Processes -- 15.6 Summary and Conclusions -- References -- Chapter 16 Soldering by Local Heating -- 16.1 Soldering in MEMS Packaging -- 16.2 Laser Soldering -- 16.3 Resistive Heating and Soldering -- 16.4 Inductive Heating and Soldering -- 16.5 Other Localized Soldering Processes -- 16.5.1 Self‐propagative Reaction Heating -- 16.5.2 Ultrasonic Frictional Heating -- References -- Chapter 17 Packaging, Sealing, and Interconnection -- 17.1 Wafer Level Packaging -- 17.2 Sealing -- 17.2.1 Reaction Sealing -- 17.2.2 Deposition Sealing (Shell Packaging) -- 17.2.3 Metal Compression Sealing -- 17.3 Interconnection -- 17.3.1 Vertical Feedthrough Interconnection -- 17.3.1.1 Through Glass via (TGV) Interconnection -- 17.3.1.2 Through Si via (TSiV) Interconnection -- 17.3.2 Lateral Feedthrough Interconnection -- 17.3.3 Interconnection by Electroplating -- References -- Chapter 18 Vacuum Packaging -- 18.1 Problems of Vacuum Packaging -- 18.2 Vacuum Packaging by Anodic Bonding -- 18.3 Packaging by Anodic Bonding with Controlled Cavity Pressure -- 18.4 Vacuum Packaging by Metal Bonding -- 18.5 Vacuum Packaging by Deposition -- 18.6 Hermeticity Testing -- References -- Chapter 19 Buried Channels in Monolithic Si -- 19.1 Buried Channel/Cavity in LSI and MEMS -- 19.2 Monolithic SON Technology and Related Technologies -- 19.3 Applications of SON -- References -- Chapter 20 Through‐substrate Vias -- 20.1 Configurations of TSVs -- 20.1.1 Solid TSVs -- 20.1.2 Hollow TSVs -- 20.1.3 Air‐gap TSVs -- 20.2 TSV Applications in MEMS -- 20.2.1 Signal Conduction to the Wafer Backside -- 20.2.2 CMOS‐MEMS 3D Integration -- 20.2.3 MEMS and CMOS 2.5D Integration -- 20.2.4 Wafer‐level Vacuum Packaging -- 20.2.5 Other Applications -- 20.3 Considerations for TSV in MEMS.
20.4 Fundamental TSV Fabrication Technologies.
Altri titoli varianti: Three-dimentional and circuit integration of MEMS
Titolo autorizzato: 3D and circuit integration of MEMS  Visualizza cluster
ISBN: 3-527-82324-7
3-527-82325-5
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910554856503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui