Vai al contenuto principale della pagina
Autore: | Elmasry George F. |
Titolo: | Dynamic spectrum access decisions : local, distributed, centralized and hybrid designs / / George F. Elmasry |
Pubblicazione: | Hoboken, New Jersey, USA : , : Wiley, , 2020 |
[Piscataqay, New Jersey] : , : IEEE Xplore, , [2020] | |
Descrizione fisica: | 1 online resource (748 pages) |
Disciplina: | 384.54524 |
Soggetto topico: | Radio resource management (Wireless communications) |
Cognitive radio networks | |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | About the Author -- Preface -- List of Acronyms -- Part 1: DSA Basic Design Concept -- 1 Introduction -- 1.1 Summary of DSA decision making processes -- 1.2 The hierarchy of DSA decision making -- 1.3 The impact of DSA control traffic -- 1.4 The involvement of DSA decision making -- 1.5 The pitfalls of DSA decision making -- 1.6 Concluding remarks -- 1.7 1Exercises -- Bibliography -- 2 Spectrum Sensing Technique -- 2.1 Multidimensional spectrum sensing and sharing -- 2.2 Time, frequency and power spectrum sensing -- 2.3 Energy detection sensing -- 2.3.1 Energy detection sensing of a communications signal (same-channel in-band sensing) -- 2.3.2 Time domain energy detection -- 2.3.3 Frequency domain energy detection -- 2.4 Signal characteristics spectrum sensing -- 2.4.1 Matched filter based spectrum sensing -- 2.4.2 Autocorrelation based spectrum sensing -- 2.4.3 Spreading code spectrum sensing -- 2.4.4 Frequency hopping spectrum sensing -- 2.4.5 Orthogonality based spectrum sensing -- 2.4.6 Waveform based spectrum sensing -- 2.4.7 Cyclostationarity based spectrum sensing -- 2.5 Euclidean space based detection -- 2.5.1 Geographical space detection -- 2.5.2 Angle of RF beam detection -- 2.6 Other sensing techniques -- 2.7 Concluding remarks -- 2.8 Exercises -- Bibliography -- 3 Receiver Operating Characteristics (ROC) and Decision Fusion -- 3.1 Basic ROC model adaptation for DSA -- 3.2 Adapting the ROC model for same-channel in-band sensing -- 3.3 Decision fusion -- 3.3.1 Local decision fusion -- 3.3.1.1 Local decision fusion for same-channel in-band sensing -- 3.3.1.2 Local decision fusion with directional energy detection -- 3.3.2 Distributed and centralized decision fusion -- 3.4 Concluding remarks -- 3.5 Exercises -- Appendix A: Basic principles of the ROC model -- A1. The ROC curve as connecting points -- A2. The ROC curve classifications -- Bibliography -- 4 Designing a Hybrid DSA System -- 4.1 Reasons for using hybrid DSA design approach -- 4.2 Decision fusion cases. |
4.3 The role of other cognitive processes -- 4.4 How far can distributed cooperative DSA design go? -- 4.5 Using a centralized DSA arbitrator -- 4.6 Concluding remarks -- 4.7 Exercises -- Bibliography -- Part 2: Case Studies -- 5 DSA as a Set of Cloud Services -- 5.1 DSA services in the hierarchy of heterogeneous networks -- 5.2 The generic DSA cognitive engine skeleton -- 5.2.1 The main thread in the central arbitrator DSA cognitive engine -- 5.2.2 A critical thread in the gateway DSA cognitive engine -- 5.2.3 The gateway cognitive engine propagation of fused information to the central arbitrator thread -- 5.3 DSA cloud services metrics -- 5.3.1 DSA cloud services metrics model -- 5.3.2 DSA cloud services metrology -- 5.3.3 Examples of DSA cloud services metrics -- 5.3.3.1 Response time -- 5.3.3.2 Hidden node -- 5.3.3.3 Meeting traffic demand -- 5.3.3.4 Rippling -- 5.3.3.5 Co-site interference impact -- 5.3.3.6 Other metrics -- 5.3.3.7 Generalizing a metric description -- 5.4 Concluding remarks -- 5.5 Exercises -- Bibliography -- 6 Dynamic Spectrum Management for 5G Cellular Systems -- 6.1 Basic concepts of 5G -- 6.2 Spatial modeling and the impact of 5G dense cell deployment -- 6.2.1 Spatial modeling and SIR -- 6.2.2. SIR and connectivity -- 6.2.3 Generl case connectivity and coverage -- 6.2.3.1 Transmission capacity -- 6.2.3.2 5G cell overlay -- 6.3 Stages of 5G SI cancellation -- 6.4 5G and cooperative spectrum sensing -- 6.4.1 The macrocell as the main fusion center -- 6.4.2 Spectrum agents (SAs) operate autonomously -- 6.4.3 The end user as its own arbitrator -- 6.5 Power control, orthogonality and 5G spectrum utilization -- 6.6 The role of the cell and end user devices in 5G DSM -- 6.7 Concluding remarks -- 6.8 Exercises -- Bibliography -- 7 DSA and 5G Adaptation to Military Communications -- 7.1 Multilayer security enhancements of 5G -- 7.2 MIMO design considerations -- 7.2.1 The use of MU MIMO -- 7.2.2 The use of MIMO channel training symbols for LPD/LPI. | |
7.2.3 The use of MIMO channel feedback mechanism for LPD/LPI -- 7.2.4 The use of MU MIMO for Multipath hopping -- 7.2.5 The use of MU MIMO to avoid eavesdroppers -- 7.2.6 The use of MU MIMO to discover jammers -- 7.2.7 Beamforming and LPI/LPD -- 7.3 Multifaceted optimization of MU MIMO channel in military applications -- 7.4 Other security approaches -- 7.4.1 Bottom up deployment approach -- 7.4.2 Switching a network to an anti-jamming (AJ) waveform -- 7.5 Concluding remarks -- 7.6 Exercises -- Bibliography -- 8 DSA and Co-site Interference Mitigation -- 8.1 Power spectral density lobes -- 8.2 Co-site interference between frequencies in different bands -- 8.3 Co-site interference for unlicensed frequency blocks -- 8.4 Adapting the platforḿs co-site interference analysis process for DSA services -- 8.5 Adapting the external systemś co-site interference analysis for DSA -- 8.6 Considering the inter-system co-site interference impact -- 8.7 Using lookup tables as weighted metrics -- 8.8 Co-site interference incorporation in decision fusion and fine-tuning of co-site impact -- 8.9 DSA systeḿs co-site interference impact on external systems -- 8.10 The locations where co-site interference lookup tables and metrics are utilized -- 8.11 Concluding Remarks -- Bibliography -- Part 3: TECHNIQUES FOR SPECTRUM MANAGEMENT OPERATIONS -- Page -- PREFACE iv -- INTRODUCTION v -- Chapter 1 OVERVIEW 1-1 -- Electromagnetic Spectrum 1-1 -- Definition 1-3 -- Objective 1-4 -- Core Functions 1-5 -- Army Spectrum Management Operations Process 1-5 -- Chapter 2 TACTICAL STAFF ORGANIZATION AND PLANNING 2-1 -- Spectrum Management Operations for Corps and Below 2-1 -- Division, Brigade and Battalion Spectrum Operations 2-3 -- Spectrum Managers Assigned to Cyber Electromagnetic Activity -- Working Group 2-3 -- Cyber Electromagnetic Activities Element 2-4 -- Tips for Spectrum Managers 2-6 -- The Military Decisionmaking Process 2-7 -- Support to the MDMP Steps 2-8 -- The Common Operational Picture 2-10. | |
Chapter 3 SUPPORT TO THE WARFIGHTING FUNCTIONS 3-1 -- Movement and Maneuver 3-1 -- Intelligence 3-1 -- Fires 3-1 -- Sustainment 3-2 -- Mission Command 3-2 -- Protection 3-4 -- Chapter 4 JOINT TASK FORCE CONSIDERATIONS 4-1 -- Inputs and Products of Joint Task Force Spectrum Managers 4-1 -- Joint Frequency Management Office 4-1 -- Joint Spectrum Management Element 4-3 -- Spectrum Management Support to Defense Support of Civil -- Authorities 4-6 -- Chapter 5 SPECTRUM MANAGEMENT OPERATIONS TOOLS 5-1 -- Tool Considerations 5-1 -- Joint Spectrum Interference Resolution Online 5-11 -- Joint Spectrum Data Repository 5-11 -- Appendix A SPECTRUM MANAGEMENT TASK LIST A-1 -- Appendix B CAPABILITIES AND COMPATIBILITY BETWEEN TOOLS B-1 -- Appendix C SPECTRUM PHYSICS C-1 -- Appendix D SPECTRUM MANAGEMENT LIFECYCLE D-1 -- Appendix E MILITARY TIME ZONE DESIGNATORS E-1 -- Part 4: THE IEEE STANDARDS 1900x - 2019 -- Dynamic Spectrum Access Networks Standards Committee (DySPAN-SC) -- IEEE Standard for Definitions and Concepts for Dynamic Spectrum Access: Terminology Relating to Emerging Wireless Networks, System Functionality, and Spectrum Management -- 1. Overview 12 -- 1.1 Scope 12 -- 1.2 Purpose 12 -- 2. Acronyms and abbreviations 13 -- 3. Definitions of advanced radio system concepts 14 -- 3.1 Adaptive radio 14 -- 3.2 Cognitive radio 15 -- 3.3 Hardware-defined radio 15 -- 3.4 Hardware radio 15 -- 3.5 Intelligent radio 16 -- 3.6 Policy-based radio 16 -- 3.7 Reconfigurable radio 16 -- 3.8 Software-controlled radio 16 -- 3.9 Software-defined radio 16 -- 4. Definitions of radio system functional capabilities 17 -- 4.1 Adaptive modulation 17 -- 4.2 Cognition 17 -- 4.3 Cognitive control mechanism 17 -- 4.4 Cognitive process 17 -- 4.5 Cognitive radio system 18 -- 4.6 Frequency agility 18 -- 4.7 Geolocation capability 18 -- 4.8 Location awareness 18 -- 4.9 Policy-based control mechanism 18 -- 4.10 Policy conformance reasoner 19 -- 4.11 Policy enforcer 19 -- 4.12 Radio awareness 19 -- 4.13 Software controlled 19. | |
4.14 Software defined 19 -- 4.15 System strategy reasoning capability 19 -- 4.16 Transmit power control 20 -- 5. Definitions of decision-making and control concepts that support advanced radio system technologies 20 -- 5.1 Coexistence policy 20 -- 5.2 DSA policy language 20 -- 5.3 Formal policy 20 -- 5.4 Meta-policy 20 -- 5.5 Model-theoretic computational semantics 20 -- 5.6 Policy language 20 -- 5.7 Reasoner 21 -- 6. Definitions of network technologies that support advanced radio system technologies 21 -- 6.1 Cognitive radio network 21 -- 6.2 Dynamic spectrum access networks 21 -- 6.3 Reconfigurable networks 21 -- 7. Spectrum management definitions 21 -- 7.1 Allocation 21 -- 7.2 Clear channel assessment function 22 -- 7.3 Coexistence 22 -- 7.4 Coexistence mechanism 22 -- 7.5 Cognitive interference avoidance 22 -- 7.6 Collaboration 22 -- 7.7 Collaborative decoding 22 -- 7.8 Cooperation 23 -- 7.9 Data archive 23 -- 7.10 Distributed radio resource usage optimization 23 -- 7.11 Distributed sensing 23 -- 7.12 Dynamic channel assignment 23 -- 7.13 Dynamic frequency selection 23 -- 7.14 Dynamic frequency sharing 24 -- 7.15 Dynamic spectrum access 24 -- 7.16 Dynamic spectrum assignment 24 -- 7.17 Dynamic spectrum management 25 -- 7.18 Electromagnetic compatibility 25 -- 7.19 Frequency hopping 25 -- 7.20 Frequency sharing 25 -- 7.21 Hierarchical spectrum access 25 -- 7.22 Horizontal spectrum sharing 26 -- 7.23 Interference 26 -- 7.24 Opportunistic spectrum access 26 -- 7.25 Opportunistic spectrum management 26 -- 7.26 Policy authority 26 -- 7.27 Policy traceability 27 -- 7.28 Radio environment map 27 -- 7.29 RF environment map 27 -- 7.30 Sensing control information 27 -- 7.31 Sensing information 27 -- 7.32 Sensor 27 -- 7.33 Spectral opportunity 27 -- 7.34 Spectrum access 27 -- 7.35 Spectrum broker 28 -- 7.36 Spectrum efficiency 28 -- 7.37 Spectrum etiquette 28 -- 7.38 Spectrum leasing 28 -- 7.39 Spectrum management 28 -- 7.40 Spectrum overlay 29 -- 7.41 Spectrum owner 29. | |
7.42 Spectrum pooling 29 -- 7.43 Spectrum sensing 29 -- 7.44 Cooperative spectrum sensing 30 -- 7.45 Collaborative spectrum sensing 30 -- 7.46 Spectrum sharing 30 -- 7.47 Spectrum underlay 30 -- 7.48 Spectrum utilization 30 -- 7.49 Spectrum utilization efficiency 31 -- 7.50 Vertical spectrum sharing 31 -- 7.51 White space 32 -- 7.52 White space database 32 -- 7.53 White space frequency band 32 -- 7.54 White space spectrum band 32 -- 8. Glossary of ancillary terminology 32 -- 8.1 Air interface 32 -- 8.2 Digital policy 32 -- 8.3 Domain 33 -- 8.4 Interference temperature 33 -- 8.5 Interoperability 33 -- 8.6 Machine learning 33 -- 8.7 Machine-understandable policies 33 -- 8.8 Ontology 33 -- 8.9 Policy 34 -- 8.10 Quality of service 34 -- 8.11 Radio 34 -- 8.12 Radio node 35 -- 8.13 Radio spectrum 35 -- 8.14 Receiver 35 -- 8.15 Software 35 -- 8.16 Transmitter 35 -- 8.17 Waveform 35 -- 8.18 Waveform processing 36 -- Annex A (informative) Implications of advanced radio system technologies for spectrum 37 -- Annex B (informative) Explanatory notes on advanced radio system technologies and advanced spectrum management concepts 41 -- Annex C (informative) List of deleted terms from the previous versions of IEEE Std 1901.1 66 -- Annex D (informative) Bibliography 73 -- IEEE Recommended Practice for the Analysis of In-Band and Adjacent Band Interference and Coexistence Between Radio Systems -- 1. Overview 1 -- 1.1 Relationship to traditional spectrum management 1 -- 1.2 Introduction to this recommended practice 2 -- 1.3 Scope 2 -- 1.4 Purpose 3 -- 1.5 Rationale 3 -- 2. Normative references 5 -- 3. Definitions, acronyms, and abbreviations 5 -- 3.1 Definitions 5 -- 3.2 Acronyms and abbreviations 7 -- 4. Key concepts 8 -- 4.1 Interference and coexistence analysis 8 -- 4.2 Measurement event 8 -- 4.3 Interference event 9 -- 4.4 Harmful interference 9 -- 4.5 Physical and logical domains 9 -- 5. Structure of analysis and report 10 -- 5.1 Structure for analysis 10 -- 5.2 Process floẃdivergence, reduction, and convergence 12. | |
5.3 Report structure 14 -- 6. Scenario definition 14 -- 6.1 General 14 -- 6.2 Study question 16 -- 6.3 Benefits and impacts of proposal 16 -- 6.4 Scenario(s) and usage model 16 -- 6.5 Case(s) for analysis 25 -- 7. Criteria for interference 25 -- 7.1 General 25 -- 7.2 Interference characteristics 26 -- 7.3 Measurement event 28 -- 7.4 Interference event 28 -- 7.5 Harmful interference criteria 28 -- 8. Variables 32 -- 8.1 General 32 -- 8.2 Variable selection 34 -- 9. Analysiśmodeling, simulation, measurement, and testing 35 -- 9.1 General 35 -- 9.2 Selection of the analysis approach, tools, and techniques 36 -- 9.3 Matrix reduction 37 -- 9.4 Performing the analysis 38 -- 9.5 Quantification of benefits and interference 38 -- 9.6 Analysis of mitigation options 38 -- 9.7 Analysis uncertainty 38 -- 10. Conclusions and summary 39 -- 10.1 Benefits and impacts 39 -- 10.2 Summation 39 -- Annex A (informative) Propagation modeling 40 -- Annex B (informative) Audio interference 48 -- Annex C (informative) Spectrum utilization efficiency 51 -- Annex D (informative) Sample analysiśselection of listen-before-talk threshold 55 -- Annex E (informative) Sample analysiśeffect of out-of-band emissions on a LBT band 63 -- Annex F (informative) Sample analysiśLow-power radios operating in the TV band 70 -- Annex G (informative) Sample analysiśRF test levels for ANSI C63.9 [B3] 81 -- Annex H (normative) Glossary 89 -- Annex I (informative) Bibliography 93 -- IEEE Standard for Architectural Building Blocks Enabling Network-Device Distributed Decision Making for Optimized Radio Resource Usage in Heterogeneous Wireless Access Networks -- 1. Overview 1 -- 1.1 Scope 1 -- 1.2 Purpose 1 -- 1.3 Document overview 1 -- 2. Normative references 2 -- 3. Definitions, acronyms, and abbreviations 3 -- 3.1 Definitions 3 -- 3.2 Acronyms and abbreviations 5 -- 4. Overall system description 5 -- 4.1 System overview 5 -- 4.2 Summary of use cases 7 -- 4.3 Assumptions 8 -- 5. Requirements 9 -- 5.1 System requirements 9. | |
5.2 Functional requirements 12 -- 5.3 Information model requirements 14 -- 6. Architecture 14 -- 6.1 System description 14 -- 6.2 Functional description 18 -- 7. Information model 24 -- 7.1 Introduction 24 -- 7.2 Information modeling approach 25 -- 7.3 Information model classes 25 -- 8. Procedures 32 -- 8.1 Introduction 32 -- 8.2 Generic procedures 36 -- 8.3 Examples of use case realization 49 -- Annex A (informative) Use cases 53 -- A.1 Dynamic spectrum assignment 53 -- A.2 Dynamic spectrum sharing 59 -- A.3 Distributed radio resource usage optimization 61 -- Annex B (normative) Class definitions for information model 63 -- B.1 Notational tools 63 -- B.2 Common base class 64 -- B.3 Policy classes 64 -- B.4 Terminal classes 66 -- B.5 CWN classes 74 -- B.6 Relations between terminal and CWN classes 82 -- Annex C (normative) Data type definitions for information model 84 -- C.1 Function definitions 84 -- C.2 ASN.1 type definitions 86 -- Annex D (informative) Information model extensions and usage example 93 -- D.1 Functions for external management interface 93 -- D.2 Additional utility classes 94 -- D.3 Additional ASN.1 type definitions for utility classes 103 -- D.4 Example for distributed radio resource usage optimization use case 104 -- Annex E (informative) Deployment examples 109 -- E.1 Introduction 109 -- E.2 Deployment examples for single operator scenario 109 -- E.3 Multiple operator scenario 1 (NRM is inside operator) 114 -- E.4 Multiple operator scenario 2 (NRM is outside operator) 115 -- Annex F (informative) Bibliography 117 -- IEEE Standard for Policy Language Requirements and System Architectures for Dynamic Spectrum Access Systems -- 1. Overview 1 -- 1.1 Scope 1 -- 1.2 Purpose 1 -- 1.3 Document overview 2 -- 2. Normative references 2 -- 3. Definitions, acronyms, and abbreviations 2 -- 3.1 Definitions 2 -- 3.2 Acronyms and abbreviations 6 -- 4. Architecture requirements for policy-based control of DSA radio systems 8 -- 4.1 General architecture requirements 8. | |
4.2 Policy management requirements 9 -- 5. Architecture components and interfaces for policy-based control of DSA radio systems 10 -- 5.1 Policy management point 12 -- 5.2 Policy conformance reasoner 12 -- 5.3 Policy enforcer (PE) 14 -- 5.4 Policy repository 15 -- 5.5 System strategy reasoning capability (SSRC) 16 -- 6. Policy language and reasoning requirements 17 -- 6.1 Language expressiveness 18 -- 6.2 Reasoning about policies 27 -- Annex A (informative) Use cases 29 -- Annex B (informative) Illustrative examples of DSA policy-based architecture 31 -- Annex C (informative) Relation of IEEE 1900.5 policy architecture to other policy architectures 33 -- Annex D (informative) Characteristics of imperative (procedural) and declarative languages for satisfying language requirements for cognitive radio systems 35 -- Annex E (informative) Example sequence diagrams of IEEE 1900.5 system 36 -- E.1 Overview 36 -- E.2 Assumptions 36 -- E.3 Sequence diagram organization 37 -- Annex F (informative) Bibliography 41 -- IEEE Standard for Spectrum Sensing Interfaces and Data Structures for Dynamic Spectrum Access and Other Advanced Radio Communication Systems -- 1. Overview 1 -- 1.1 Scope 2 -- 1.2 Purpose 2 -- 1.3 Interfaces and sample application areas 2 -- 1.4 Conformance keywords 4 -- 2. Normative references 4 -- 3. Definitions, acronyms and abbreviations 5 -- 3.1 Definitions 5 -- 3.2 Acronyms and abbreviations 7 -- 4. System model 8 -- 4.1 Scenario 1: Single CE/DA and single Sensor 8 -- 4.2 Scenario 2: Single CE/DA and multiple Sensors 9 -- 4.3 Scenario 3: Multiple CE/DA and single Sensor 10 -- 5. The IEEE 1900.6 reference model 11 -- 5.1 General description 11 -- 5.2 An implementation example of the IEEE 1900.6 reference model 14 -- 5.3 Service access points (SAPs) 15 -- 6. Information description 70 -- 6.1 Information categories 70 -- 6.2 Data types 73 -- 6.3 Description of sensing-related parameters 75 -- 6.4 Data representation 88 -- 7. State diagram and generic procedures 95. | |
7.1 State description 95 -- 7.2 State transition description 96 -- 7.3 Generic procedures 98 -- 7.4 Example procedures for use cases 101 -- Annex A (informative) Use cases 107 -- Annex B (informative) Use case classification 143 -- Annex C (informative) Implementation of distributed sensing 148 -- Annex D (informative) IEEE 1900.6 DA: Scope and usage 153 -- Annex E (informative) Analysis of available/future technologies 157 -- Annex F (informative) Bibliography 15 -- IEEE Standard for Radio Interface for White Space Dynamic Spectrum Access Radio Systems Supporting Fixed and Mobile Operation -- 1. Overview 1 -- 1.1 Scope 1 -- 1.2 Purpose 1 -- 2. Definitions, acronyms, and abbreviations 2 -- 2.1 Definitions 2 -- 2.2 Acronyms and abbreviations 2 -- 3. Reference model 3 -- 4. MAC sublayer 4 -- 4.1 Architecture of the MAC sublayer 4 -- 4.2 Type definition 4 -- 4.3 MAC frame formats 4 -- 4.4 MAC sublayer service specification 9 -- 4.5 MAC functional description 24 -- 5. PHY layer 37 -- 5.1 PHY layer service specification 37 -- 5.2 CRC method 42 -- 5.3 Channel coding (including interleaving and modulation) 42 -- 5.4 Mapping modulated symbols to carriers 47 -- 5.5 Transmitter requirements 53 -- Annex A (informative) Coexistence considerations 55. | |
Sommario/riassunto: | "This book targets the field of dynamic spectrum access (DSA) (also referred to as dynamic spectrum awareness, dynamic spectrum management (DSM) or cooperative spectrum management). Its aim is to help engineers design the most suitable DSA approach for whatever system is being built. DSA is needed for a wide range of civilian and military communications systems and a form of DSA can be used for licensed and unlicensed spectrum bands. DSA is presented in this book with a wider context than cognitive radios. In today's ever-increasing appetite for bandwidth, different types of communications systems are evolving towards DSA but not necessarily in the context of cognitive radios. The book is meant for those with basic knowledge of wireless communications and wireless networks and has interest in the design and implementation of the physical layer and medium access control (MAC) layer of wireless communication systems to include Cognitive Radios and Cognitive Networks. Understanding the aspects of digital communications is a must for readers of this book"-- |
Titolo autorizzato: | Dynamic spectrum access decisions |
ISBN: | 1-119-57379-3 |
1-119-57377-7 | |
1-119-57378-5 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910554805503321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |