Vai al contenuto principale della pagina

An introduction to the geometry of stochastic flows [[electronic resource] /] / Fabrice Baudoin

(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Baudoin Fabrice Visualizza persona
Titolo: An introduction to the geometry of stochastic flows [[electronic resource] /] / Fabrice Baudoin Visualizza cluster
Pubblicazione: London, : Imperial College Press, c2004
Descrizione fisica: 1 online resource (152 p.)
Disciplina: 519.2
Soggetto topico: Stochastic geometry
Flows (Differentiable dynamical systems)
Stochastic differential equations
Soggetto genere / forma: Electronic books.
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Preface; Contents; Chapter 1 Formal Stochastic Differential Equations; Chapter 2 Stochastic Differential Equations and Carnot Groups; Chapter 3 Hypoelliptic Flows; Appendix A Basic Stochastic Calculus; Appendix B Vector Fields, Lie Groups and Lie Algebras; Bibliography; Index
Sommario/riassunto: This book aims to provide a self-contained introduction to the local geometry of the stochastic flows. It studies the hypoelliptic operators, which are written in Hörmander's form, by using the connection between stochastic flows and partial differential equations. The book stresses the author's view that the local geometry of any stochastic flow is determined very precisely and explicitly by a universal formula referred to as the Chen-Strichartz formula. The natural geometry associated with the Chen-Strichartz formula is the sub-Riemannian geometry, and its main tools are introduced throughou
Titolo autorizzato: An introduction to the geometry of stochastic flows  Visualizza cluster
ISBN: 1-281-86681-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910538064103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui