Vai al contenuto principale della pagina

Multi-Valued Variational Inequalities and Inclusions / / by Siegfried Carl, Vy Khoi Le



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Carl S (Siegfried) Visualizza persona
Titolo: Multi-Valued Variational Inequalities and Inclusions / / by Siegfried Carl, Vy Khoi Le Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Edizione: 1st ed. 2021.
Descrizione fisica: 1 online resource (XVII, 584 p. 5 illus.)
Disciplina: 515.64
Soggetto topico: Mathematical analysis
Differential equations
Operator theory
Mathematical optimization
Calculus of variations
Mathematics
Analysis
Differential Equations
Operator Theory
Calculus of Variations and Optimization
Applications of Mathematics
Persona (resp. second.): LeVy Khoi
Sommario/riassunto: This book focuses on a large class of multi-valued variational differential inequalities and inclusions of stationary and evolutionary types with constraints reflected by subdifferentials of convex functionals. Its main goal is to provide a systematic, unified, and relatively self-contained exposition of existence, comparison and enclosure principles, together with other qualitative properties of multi-valued variational inequalities and inclusions. The problems under consideration are studied in different function spaces such as Sobolev spaces, Orlicz-Sobolev spaces, Sobolev spaces with variable exponents, and Beppo-Levi spaces. A general and comprehensive sub-supersolution method (lattice method) is developed for both stationary and evolutionary multi-valued variational inequalities, which preserves the characteristic features of the commonly known sub-supersolution method for single-valued, quasilinear elliptic and parabolic problems. This method provides a powerful tool for studying existence and enclosure properties of solutions when the coercivity of the problems under consideration fails. It can also be used to investigate qualitative properties such as the multiplicity and location of solutions or the existence of extremal solutions. This is the first in-depth treatise on the sub-supersolution (lattice) method for multi-valued variational inequalities without any variational structures, together with related topics. The choice of the included materials and their organization in the book also makes it useful and accessible to a large audience consisting of graduate students and researchers in various areas of Mathematical Analysis and Theoretical Physics.
Titolo autorizzato: Multi-valued variational inequalities and inclusions  Visualizza cluster
ISBN: 3-030-65165-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910484979103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Springer Monographs in Mathematics, . 2196-9922