Vai al contenuto principale della pagina

Conditionals, information, and inference : 2002, Hagen, Germany, May 13-15, 2002, revised selected papers / / edited by Gabriele Kern-Isberner, Wilhelm Rödder, Friedhelm Kulmann



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Conditionals, information, and inference : 2002, Hagen, Germany, May 13-15, 2002, revised selected papers / / edited by Gabriele Kern-Isberner, Wilhelm Rödder, Friedhelm Kulmann Visualizza cluster
Pubblicazione: Berlin, Germany ; ; New York, New York : , : Springer, , [2005]
©2005
Edizione: 1st ed. 2005.
Descrizione fisica: 1 online resource (XII, 219 p.)
Disciplina: 511.352
Soggetto topico: Computational complexity
Uncertainty (Information theory)
Persona (resp. second.): RödderWilhelm
Kern-IsbernerGabriele <1956->
KulmannFriedhelm
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Invited Papers -- What Is at Stake in the Controversy over Conditionals -- Reflections on Logic and Probability in the Context of Conditionals -- Acceptance, Conditionals, and Belief Revision -- Regular Papers -- Getting the Point of Conditionals: An Argumentative Approach to the Psychological Interpretation of Conditional Premises -- Projective Default Epistemology -- On the Logic of Iterated Non-prioritised Revision -- Assertions, Conditionals, and Defaults -- A Maple Package for Conditional Event Algebras -- Conditional Independences in Gaussian Vectors and Rings of Polynomials -- Looking at Probabilistic Conditionals from an Institutional Point of View -- There Is a Reason for Everything (Probably): On the Application of Maxent to Induction -- Completing Incomplete Bayesian Networks.
Sommario/riassunto: Conditionals are fascinating and versatile objects of knowledge representation. On the one hand, they may express rules in a very general sense, representing, for example, plausible relationships, physical laws, and social norms. On the other hand, as default rules or general implications, they constitute a basic tool for reasoning, even in the presence of uncertainty. In this sense, conditionals are intimately connected both to information and inference. Due to their non-Boolean nature, however, conditionals are not easily dealt with. They are not simply true or false — rather, a conditional “if A then B” provides a context, A, for B to be plausible (or true) and must not be confused with “A entails B” or with the material implication “not A or B.” This ill- trates how conditionals represent information, understood in its strict sense as reduction of uncertainty. To learn that, in the context A, the proposition B is plausible, may reduce uncertainty about B and hence is information. The ab- ity to predict such conditioned propositions is knowledge and as such (earlier) acquired information. The ?rst work on conditional objects dates back to Boole in the 19th c- tury, and the interest in conditionals was revived in the second half of the 20th century, when the emerging Arti?cial Intelligence made claims for appropriate formaltoolstohandle“generalizedrules.”Sincethen,conditionalshavebeenthe topic of countless publications, each emphasizing their relevance for knowledge representation, plausible reasoning, nonmonotonic inference, and belief revision.
Titolo autorizzato: Conditionals, Information, and Inference  Visualizza cluster
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910484125803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Artificial Intelligence ; ; 3301