Vai al contenuto principale della pagina

The Spread of Almost Simple Classical Groups / / by Scott Harper



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Harper Scott (Mathematician) Visualizza persona
Titolo: The Spread of Almost Simple Classical Groups / / by Scott Harper Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Edizione: 1st ed. 2021.
Descrizione fisica: 1 online resource (158 pages)
Disciplina: 512.2
Soggetto topico: Group theory
Group Theory and Generalizations
Nota di contenuto: Intro -- Preface -- Contents -- 1 Introduction -- 2 Preliminaries -- Notational Conventions -- 2.1 Probabilistic Method -- 2.2 Classical Groups -- 2.3 Actions of Classical Groups -- 2.4 Standard Bases -- 2.5 Classical Algebraic Groups -- 2.6 Maximal Subgroups of Classical Groups -- 2.7 Computational Methods -- 3 Shintani Descent -- 3.1 Introduction -- 3.2 Properties -- 3.3 Applications -- 3.4 Generalisation -- 4 Fixed Point Ratios -- 4.1 Subspace Actions -- 4.2 Nonsubspace Actions -- 5 Orthogonal Groups -- 5.1 Introduction -- 5.2 Automorphisms -- 5.2.1 Preliminaries -- 5.2.2 Plus-Type -- 5.2.3 Minus-Type -- 5.2.4 Conjugacy of Outer Automorphisms -- 5.3 Elements -- 5.3.1 Preliminaries -- 5.3.2 Types of Semisimple Elements -- 5.3.3 Reflections -- 5.3.4 Field Extension Subgroups -- 5.4 Case I: Semilinear Automorphisms -- 5.4.1 Case I(a) -- 5.4.2 Case I(b) -- 5.5 Case II: Linear Automorphisms -- 5.5.1 Case II(a) -- 5.5.2 Case II(b) -- 5.6 Case III: Triality Automorphisms -- 5.6.1 Case III(a) -- 5.6.2 Case III(b) -- 5.6.3 Case III(c) -- 6 Unitary Groups -- 6.1 Introduction -- 6.2 Automorphisms -- 6.3 Elements -- 6.4 Case I: Semilinear Automorphisms -- 6.4.1 Case I(a) -- 6.4.2 Case I(b) -- 6.5 Case II: Linear Automorphisms -- 6.5.1 Case II(a) -- 6.5.2 Case II(b) -- 6.6 Linear Groups -- A Magma Code -- References.
Sommario/riassunto: This monograph studies generating sets of almost simple classical groups, by bounding the spread of these groups. Guralnick and Kantor resolved a 1962 question of Steinberg by proving that in a finite simple group, every nontrivial element belongs to a generating pair. Groups with this property are said to be 3/2-generated. Breuer, Guralnick and Kantor conjectured that a finite group is 3/2-generated if and only if every proper quotient is cyclic. We prove a strong version of this conjecture for almost simple classical groups, by bounding the spread of these groups. This involves analysing the automorphisms, fixed point ratios and subgroup structure of almost simple classical groups, so the first half of this monograph is dedicated to these general topics. In particular, we give a general exposition of Shintani descent. This monograph will interest researchers in group generation, but the opening chapters also serve as a general introduction to the almost simple classical groups. .
Titolo autorizzato: The Spread of Almost Simple Classical Groups  Visualizza cluster
ISBN: 3-030-74100-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910483745203321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Mathematics, . 1617-9692 ; ; 2286