Vai al contenuto principale della pagina

Two classes of Riemannian manifolds whose geodesic flows are integrable / / Kazuyoshi Kiyohara



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Kiyohara Kazuyoshi <1954-> Visualizza persona
Titolo: Two classes of Riemannian manifolds whose geodesic flows are integrable / / Kazuyoshi Kiyohara Visualizza cluster
Pubblicazione: Providence, Rhode Island : , : American Mathematical Society, , [1997]
©1997
Descrizione fisica: 1 online resource (159 p.)
Disciplina: 510 s
516.3/73
Soggetto topico: Geodesic flows
Riemannian manifolds
Soggetto genere / forma: Electronic books.
Note generali: "November 1997, volume 130, number 619 (third of 4 numbers)."
Nota di bibliografia: Includes bibliographical references (pages 142-143).
Nota di contenuto: ""Contents""; ""Preface""; ""Part 1. Liouville Manifolds""; ""Introduction""; ""Preliminary remarks and notations""; ""1. Local Structure of Proper Liouville Manifolds""; ""1.1. Liouville manifolds and the properness""; ""1.2. Infinitesimal structure at a point in M[sup(s)]""; ""1.3. Local structure around a point in M[sup(s)]""; ""1.4. Proof of Lemma 1.2.7""; ""2. Global Structure of Proper Liouville Manifolds""; ""2.1. Submanifolds J""; ""2.2. Admissible submanifolds""; ""2.3. The core of a proper Liouville manifold""; ""3. Proper Liouville Manifolds of Rank One""
""3.1. Configuration of zeros and type of cores""""3.2. Possible cores""; ""3.3. Constructing a Liouville manifold from a possible core""; ""3.4. Classification""; ""3.5. Isomorphisms and isometries""; ""3.6. C[sub(2)]Ï€-metrics""; ""Appendix. Simply Connected Manifolds of Constant Curvature""; ""A.1. Possible cores""; ""A.2. The sphere S[sup(n)]""; ""A.3. The euclidean space R[sup(n)]""; ""A.4. The hyperbolic space H[sup(n)]""; ""Part 2. Kahler-Liouville Manifolds""; ""Introduction""; ""Preliminary remarks and notations""; ""1. Local calculus on M[sup(1)]""; ""2. Summing up the local data""
""3. Structure of M � M[sup(1)""""4. Torus action and the invariant hypersurfaces""; ""5. Properties as a toric variety""; ""6. Bundle structure associated with a subset of A""; ""7. The case where #A = 1""; ""8. Existence theorem""; ""References""
Titolo autorizzato: Two classes of Riemannian manifolds whose geodesic flows are integrable  Visualizza cluster
ISBN: 1-4704-0208-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910480997503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Memoirs of the American Mathematical Society ; ; no. 619.