Vai al contenuto principale della pagina
Autore: |
Keel Seán
![]() |
Titolo: |
Rational curves on quasi-projective surfaces / / Seán Keel, James McKernan
![]() |
Pubblicazione: | Providence, Rhode Island : , : American Mathematical Society, , [1999] |
©1999 | |
Descrizione fisica: | 1 online resource (169 p.) |
Disciplina: | 510 s |
516.3/52 | |
Soggetto topico: | Surfaces, Algebraic |
Algebraic varieties | |
Soggetto genere / forma: | Electronic books. |
Persona (resp. second.): | McKernanJames <1964-> |
Note generali: | "July 1999, volume 140, number 669 (third of 4 numbers)." |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | ""Contents""; ""Abstract""; ""Â1 Introduction and Statement of Results""; ""Â2 Glossary of notation and conventions""; ""Â3 Gorenstein del Pezzo surfaces""; ""Â4 Bug-Eyed covers""; ""Â5 Log deformation theory""; ""Â6 Criteria for log uniruledness""; ""Â7 Reduction to Ï€[sup(alg)][sub(1)](S[sup(0)]) = {1}""; ""Â8 Flushness and Preparation for the Hunt""; ""Â9 Bogomolov Bound""; ""Â10 Riemann Roch and Surfaces with Small Coefficient""; ""Â11 A partial classification of K[sub(T)]-contractions""; ""Â12 The linear system |K[sub(s)] + A|""; ""Â13 Classification of Bananas and Fences"" |
""Â14 T[sub(1)]a net""""Â15 g{A[sub(1)]) > 1""; ""Â16 A\ has a simple cusp""; ""Â17 A\ has a simple node""; ""Â18 Ai smooth""; ""Â19 The smooth banana""; ""Â20 Proof of (1.1) and corollaries""; ""Â21 A surface with Ï€[sup(alg)][sub(1)](S[sup(0)]) = {1} but no tiger""; ""Â22 Tigers, complements and toric pairs""; ""Â23 Classification of almost all rank one log del Pezzos""; "" Appendix L: Log terminal surface singularities and adjunction""; "" Appendix N: Normalisation of an algebraic space""; ""Index to Obscure or unconventional notation""; ""References"" | |
Titolo autorizzato: | Rational curves on quasi-projective surfaces ![]() |
ISBN: | 1-4704-0260-2 |
Formato: | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910480635403321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |