Vai al contenuto principale della pagina
| Autore: |
Bourdon Paul
|
| Titolo: |
Cyclic phenomena for composition operators / / Paul S. Bourdon, Joel H. Shapiro
|
| Pubblicazione: | Providence, Rhode Island : , : American Mathematical Society, , 1997 |
| ©1997 | |
| Descrizione fisica: | 1 online resource (122 p.) |
| Disciplina: | 515/.7246 |
| Soggetto topico: | Composition operators |
| Soggetto genere / forma: | Electronic books. |
| Persona (resp. second.): | ShapiroJoel H. |
| Note generali: | "January 1997, Volume 125, Number 596 (second of 5 numbers)." |
| Nota di bibliografia: | Includes bibliographical references. |
| Nota di contenuto: | ""Contents""; ""Introduction""; ""Cyclicity""; ""Cyclicity and Iteration""; """"Linear-Fractional"" Classification of Arbitrary Maps""; ""Transference""; ""The Intertwining Map Ï?""; ""1 Preliminaries""; ""The Space H[sup(2)]""; ""Angular Derivatives""; ""Cyclicity and Univalence""; ""Hypercyclicity Basics""; ""2 Linear-Fractional Composition Operators""; ""Linear-Fractional Basics""; ""Cyclicity: First Observations""; ""The Main Theorem""; ""Remarks on ""Extreme Behavior""""; ""3 Linear-Fractional Models""; ""First Applications of Transference""; ""Cyclicity and Fixed-Point Position"" |
| ""4 The Hyperbolic and Parabolic Models""""Expansions About the Denjoy-Wolff Point""; ""Consequences for Parabolic Type""; ""The Hyperbolic Case""; ""The Parabolic Case""; ""Consequences of The Parabolic Models Theorem""; ""Motivation for the Proof""; ""Estimates on Orbit Magnitudes""; ""Proof of the Parabolic Models Theorem""; ""5 Cyclicity: Parabolic Nonautomorphism Case""; ""Applying the Parabolic Model""; ""A Cyclic Vector for C[sub(α)]""; ""6 Endnotes""; ""Orbit Separation and Parabolic Subtype""; ""Less Differentiability""; ""Further Directions""; ""Acknowledgment""; ""References"" | |
| Titolo autorizzato: | Cyclic phenomena for composition operators ![]() |
| ISBN: | 1-4704-0181-9 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910480468703321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |