Vai al contenuto principale della pagina
Autore: | Danielli Donatella <1966-> |
Titolo: | Non-doubling Ahlfors measures, perimeter measures, and the characterization of the trace spaces of Sobolev functions in Carnot-Carathéodory spaces / / Donatella Danielli, Nicola Garofalo, Duy-Minh Nhieu |
Pubblicazione: | Providence, Rhode Island : , : American Mathematical Society, , [2006] |
©2006 | |
Descrizione fisica: | 1 online resource (138 p.) |
Disciplina: | 510 s |
515/.2433 | |
Soggetto topico: | Harmonic analysis |
Homogeneous spaces | |
Sobolev spaces | |
Measure theory | |
Differential equations, Partial | |
Soggetto genere / forma: | Electronic books. |
Persona (resp. second.): | GarofaloNicola |
NhieuDuy-Minh <1966-> | |
Note generali: | "July 2006, volume 182, number 857 (first of 4 numbers)." |
Nota di bibliografia: | Includes bibliographical references (pages 111-119). |
Nota di contenuto: | ""Chapter 4. X-variation, X-perimeter and surface measure""""4.1. The structure of functions in BV[sub(X,loc)]""; ""4.2. X-Caccioppoli sets""; ""4.3. X-perimeter and the perimeter measure""; ""Chapter 5. Geometric estimates from above on CC balls for the perimeter measure""; ""5.1. A fundamental estimate""; ""5.2. The X-perimeter of a C[sup(1,1)] domain is an upper 1-Ahlfors measure""; ""Chapter 6. Geometric estimates from below on CC balls for the perimeter measure""; ""6.1. The relative isoperimetric inequality and Theorem 6.1""; ""6.2. A basic geometric lemma"" |
""10.2. Characterization of the traces on the boundary""""Chapter 11. The embedding of B[sup(p)][sub(β)](Ω, dÎ?) into L[sup(q)](Ω, dÎ?)""; ""Chapter 12. Returning to Carnot groups""; ""Chapter 13. The Neumann problem""; ""Chapter 14. The case of Lipschitz vector fields""; ""Bibliography"" | |
Titolo autorizzato: | Non-doubling Ahlfors measures, perimeter measures, and the characterization of the trace spaces of Sobolev functions in Carnot-Carathéodory spaces |
ISBN: | 1-4704-0461-3 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910480091603321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |