Vai al contenuto principale della pagina
Autore: | Banagl Markus <1971-> |
Titolo: | Extending intersection homology type invariants to non-Witt spaces / / Markus Banagl |
Pubblicazione: | Providence, Rhode Island : , : American Mathematical Society, , [2002] |
©2002 | |
Descrizione fisica: | 1 online resource (101 p.) |
Disciplina: | 510 s |
514/.23 | |
Soggetto topico: | Intersection homology theory |
Duality theory (Mathematics) | |
Soggetto genere / forma: | Electronic books. |
Note generali: | Description based upon print version of record. |
Nota di bibliografia: | Includes bibliographical references (page 83). |
Nota di contenuto: | ""Contents""; ""Chapter 1. Introduction""; ""1. History""; ""2. Motivation""; ""3. The Main Result: A Postnikov System of Lagrangian Structures""; ""4. Consequences: Characteristic Classes""; ""5. Ordered Resolutions � A Model Construction""; ""6. Applications""; ""7. Further Developments""; ""8. Sign Questions""; ""9. Some Remarks on Coefficients""; ""10. Acknowledgments""; ""11. Notation""; ""Chapter 2. The Algebraic Framework""; ""1. The Lifting Obstruction""; ""2. The Category of Self�Dual Sheaves Compatible with IH""; ""3. Lagrangian Structures"" |
""4. Extracting Lagrangian Structures from Selfâ€?Dual Sheaves""""5. Lagrangian Structures as Building Blocks for Selfâ€?Dual Sheaves""; ""6. A Postnikov system""; ""Chapter 3. Ordered Resolutions""; ""1. The Purpose of the Construction""; ""2. Definitions""; ""3. The PL Construction""; ""4. Inductive Singularization of a Manifold""; ""Chapter 4. The Cobordism Group Ω[sup(SD)][sub(*)]""; ""1. The Closed Objects""; ""2. The Admissible Cobordisms""; ""3. The Cobordism Invariance of Ï?""; ""4. Relation to Witt Space Cobordism""; ""Chapter 5. Lagrangian Structures and Ordered Resolutions"" | |
""1. Statement of Result""""2. The inductive set�up""; ""3. Construction of a nonsingular pairing on H[sup(k)](j*S[sup[.)]""; ""4. Stalks of H[sup(k)](j*S[sup[.)] as the hypercohomology of the link of Σ""; ""5. The restriction of L[[sup(.)](X[sup((m))]) to V(x) is self�dual""; ""6. The construction of a Lagrangian subsheaf of H[sup(k)](j*S[sup[.)]""; ""7. The definition of L[sup(.)](X[sup((m+1))])""; ""Appendix A. On Signs""; ""Bibliography"" | |
Titolo autorizzato: | Extending intersection homology type invariants to non-Witt spaces |
ISBN: | 1-4704-0358-7 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910478884103321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |