Vai al contenuto principale della pagina

Fractional Hermite-Hadamard inequalities / / JinRong Wang, Michal Feckan



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Wang JinRong (Mathematics professor) Visualizza persona
Titolo: Fractional Hermite-Hadamard inequalities / / JinRong Wang, Michal Feckan Visualizza cluster
Pubblicazione: Berlin ; ; Boston : , : De Gruyter, , [2018]
©2018
Descrizione fisica: 1 online resource (390 pages)
Disciplina: 515/.83
Soggetto topico: Fractional calculus
Calculus
Soggetto genere / forma: Electronic books.
Persona (resp. second.): FečkanMichal
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Frontmatter -- Acknowledgment -- Preface -- Contents -- 1. Introduction -- 2. Preliminaries -- 3. Fractional integral identities -- 4. Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals -- 5. Hermite-Hadamard inequalities involving Hadamard fractional integrals -- Bibliography -- About the authors -- Index
Sommario/riassunto: This book extends classical Hermite-Hadamard type inequalities to the fractional case via establishing fractional integral identities, and discusses Riemann-Liouville and Hadamard integrals, respectively, by various convex functions. Illustrating theoretical results via applications in special means of real numbers, it is an essential reference for applied mathematicians and engineers working with fractional calculus. ContentsIntroductionPreliminariesFractional integral identitiesHermite-Hadamard inequalities involving Riemann-Liouville fractional integralsHermite-Hadamard inequalities involving Hadamard fractional integrals
Titolo autorizzato: Fractional Hermite-Hadamard inequalities  Visualizza cluster
ISBN: 3-11-052244-6
3-11-052362-0
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910466782503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Fractional calculus in applied sciences and engineering ; ; Volume 5.