Vai al contenuto principale della pagina

Bayesian nonparametrics / / edited by Nils Lid Hjort [and others] [[electronic resource]]



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Bayesian nonparametrics / / edited by Nils Lid Hjort [and others] [[electronic resource]] Visualizza cluster
Pubblicazione: Cambridge : , : Cambridge University Press, , 2010
Descrizione fisica: 1 online resource (viii, 299 pages) : digital, PDF file(s)
Disciplina: 519.5/42
Soggetto topico: Nonparametric statistics
Bayesian statistical decision theory
Persona (resp. second.): HjortNils Lid
Note generali: Title from publisher's bibliographic system (viewed on 05 Oct 2015).
Nota di bibliografia: Includes bibliographical references and indexes.
Nota di contenuto: An invitation to Bayesian nonparametrics / Nils Lid Hjort, Chris Holmes, Peter Müller and Stephen G. Walker -- 1. Bayesian nonparametric methods: motivation and ideas / Stephen G. Walker -- 2. The Dirichlet process, related priors, and posterior asymptotics / Subhashis Ghosal -- 3. Models beyond the Dirichlet process / Antonio Lijoi and Igor Prünster -- 4. Further models and applications / Nils Lid Hjort -- 5. Hierarchical Bayesian nonparametric models with applications / Yee Whye Teh and Michael I. Jordan -- 6. Computational issues arising in Bayesian nonparametric hierarchical models / Jim Griffin and Chris Holmes -- 7. Nonparametric Bayes applications to biostatistics / David B. Dunson -- 8. More nonparametric Bayesian models for biostatistics / Peter Müller and Fernando Quintana -- Author index -- Subject index.
Sommario/riassunto: Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount of data. Computational issues, though challenging, are no longer intractable. All that is needed is an entry point: this intelligent book is the perfect guide to what can seem a forbidding landscape. Tutorial chapters by Ghosal, Lijoi and Prünster, Teh and Jordan, and Dunson advance from theory, to basic models and hierarchical modeling, to applications and implementation, particularly in computer science and biostatistics. These are complemented by companion chapters by the editors and Griffin and Quintana, providing additional models, examining computational issues, identifying future growth areas, and giving links to related topics. This coherent text gives ready access both to underlying principles and to state-of-the-art practice. Specific examples are drawn from information retrieval, NLP, machine vision, computational biology, biostatistics, and bioinformatics.
Titolo autorizzato: Bayesian nonparametrics  Visualizza cluster
ISBN: 1-107-20607-3
1-283-06796-X
9786613067968
0-511-67417-1
0-511-67536-4
0-511-67211-X
0-511-80247-1
0-511-67083-4
0-511-67338-8
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910465285103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Cambridge series on statistical and probabilistic mathematics ; ; 28.