Vai al contenuto principale della pagina

Szegö's theorem and its descendants [[electronic resource] ] : spectral theory for L2 perturbations of orthogonal polynomials / / Barry Simon



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Simon Barry <1946-> Visualizza persona
Titolo: Szegö's theorem and its descendants [[electronic resource] ] : spectral theory for L2 perturbations of orthogonal polynomials / / Barry Simon Visualizza cluster
Pubblicazione: Princeton, N.J., : Princeton University Press, 2010
Edizione: Course Book
Descrizione fisica: 1 online resource (663 p.)
Disciplina: 515/.55
Soggetto topico: Spectral theory (Mathematics)
Orthogonal polynomials
Soggetto genere / forma: Electronic books.
Classificazione: SK 680
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Frontmatter -- Contents -- Preface -- Chapter One. Gems of Spectral Theory -- Chapter Two. Szegő's Theorem -- Chapter Three The Killip-Simon Theorem: Szegő for OPRL -- Chapter Four. Sum Rules and Consequences for Matrix Orthogonal Polynomials -- Chapter Five. Periodic OPRL -- Chapter Six. Toda Flows and Symplectic Structures -- Chapter Seven. Right Limits -- Chapter Eight. Szegő and Killip-Simon Theorems for Periodic OPRL -- Chapter Nine. Szegő's Theorem for Finite Gap OPRL -- Chapter Ten. A.C. Spectrum for Bethe-Cayley Trees -- Bibliography -- Author Index -- Subject Index
Sommario/riassunto: This book presents a comprehensive overview of the sum rule approach to spectral analysis of orthogonal polynomials, which derives from Gábor Szego's classic 1915 theorem and its 1920 extension. Barry Simon emphasizes necessary and sufficient conditions, and provides mathematical background that until now has been available only in journals. Topics include background from the theory of meromorphic functions on hyperelliptic surfaces and the study of covering maps of the Riemann sphere with a finite number of slits removed. This allows for the first book-length treatment of orthogonal polynomials for measures supported on a finite number of intervals on the real line. In addition to the Szego and Killip-Simon theorems for orthogonal polynomials on the unit circle (OPUC) and orthogonal polynomials on the real line (OPRL), Simon covers Toda lattices, the moment problem, and Jacobi operators on the Bethe lattice. Recent work on applications of universality of the CD kernel to obtain detailed asymptotics on the fine structure of the zeros is also included. The book places special emphasis on OPRL, which makes it the essential companion volume to the author's earlier books on OPUC.
Titolo autorizzato: Szegö's theorem and its descendants  Visualizza cluster
ISBN: 1-282-82115-6
9786612821158
1-4008-3705-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910459123003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Porter Lectures