Vai al contenuto principale della pagina
Autore: | Simon Barry <1946-> |
Titolo: | Szegö's theorem and its descendants [[electronic resource] ] : spectral theory for L2 perturbations of orthogonal polynomials / / Barry Simon |
Pubblicazione: | Princeton, N.J., : Princeton University Press, 2010 |
Edizione: | Course Book |
Descrizione fisica: | 1 online resource (663 p.) |
Disciplina: | 515/.55 |
Soggetto topico: | Spectral theory (Mathematics) |
Orthogonal polynomials | |
Soggetto genere / forma: | Electronic books. |
Classificazione: | SK 680 |
Note generali: | Description based upon print version of record. |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | Frontmatter -- Contents -- Preface -- Chapter One. Gems of Spectral Theory -- Chapter Two. Szegő's Theorem -- Chapter Three The Killip-Simon Theorem: Szegő for OPRL -- Chapter Four. Sum Rules and Consequences for Matrix Orthogonal Polynomials -- Chapter Five. Periodic OPRL -- Chapter Six. Toda Flows and Symplectic Structures -- Chapter Seven. Right Limits -- Chapter Eight. Szegő and Killip-Simon Theorems for Periodic OPRL -- Chapter Nine. Szegő's Theorem for Finite Gap OPRL -- Chapter Ten. A.C. Spectrum for Bethe-Cayley Trees -- Bibliography -- Author Index -- Subject Index |
Sommario/riassunto: | This book presents a comprehensive overview of the sum rule approach to spectral analysis of orthogonal polynomials, which derives from Gábor Szego's classic 1915 theorem and its 1920 extension. Barry Simon emphasizes necessary and sufficient conditions, and provides mathematical background that until now has been available only in journals. Topics include background from the theory of meromorphic functions on hyperelliptic surfaces and the study of covering maps of the Riemann sphere with a finite number of slits removed. This allows for the first book-length treatment of orthogonal polynomials for measures supported on a finite number of intervals on the real line. In addition to the Szego and Killip-Simon theorems for orthogonal polynomials on the unit circle (OPUC) and orthogonal polynomials on the real line (OPRL), Simon covers Toda lattices, the moment problem, and Jacobi operators on the Bethe lattice. Recent work on applications of universality of the CD kernel to obtain detailed asymptotics on the fine structure of the zeros is also included. The book places special emphasis on OPRL, which makes it the essential companion volume to the author's earlier books on OPUC. |
Titolo autorizzato: | Szegö's theorem and its descendants |
ISBN: | 1-282-82115-6 |
9786612821158 | |
1-4008-3705-7 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910459123003321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |