Vai al contenuto principale della pagina

Multi-label dimensionality reduction / / Liang Sun, Shuiwang Ji, and Jieping Ye



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Sun Liang Visualizza persona
Titolo: Multi-label dimensionality reduction / / Liang Sun, Shuiwang Ji, and Jieping Ye Visualizza cluster
Pubblicazione: Boca Raton, FL : , : CRC Press, , [2014]
©2014
Edizione: 1st edition
Descrizione fisica: 1 online resource (206 p.)
Disciplina: 006.3/1
Soggetto topico: Computational complexity
Machine learning
Pattern perception
Soggetto genere / forma: Electronic books.
Persona (resp. second.): JiShuiwang
YeJieping
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Cover; Series; Contents; Preface; Symbol Description; Chapter 1: Introduction; Chapter 2: Partial Least Squares; Chapter 3: Canonical Correlation Analysis; Chapter 4: Hypergraph Spectral Learning; Chapter 5: A Scalable Two-Stage Approach for Dimensionality Reduction; Chapter 6: A Shared-Subspace Learning Framework; Chapter 7: Joint Dimensionality Reduction and Classification; Chapter 8: Nonlinear Dimensionality Reduction: Algorithms and Applications; Appendix Proofs; References; Back Cover
Sommario/riassunto: Similar to other data mining and machine learning tasks, multi-label learning suffers from dimensionality. An effective way to mitigate this problem is through dimensionality reduction, which extracts a small number of features by removing irrelevant, redundant, and noisy information. The data mining and machine learning literature currently lacks a unified treatment of multi-label dimensionality reduction that incorporates both algorithmic developments and applications. Addressing this shortfall, Multi-Label Dimensionality Reduction covers the methodological developments, theoretical properti
Titolo autorizzato: Multi-label dimensionality reduction  Visualizza cluster
ISBN: 0-429-14820-8
1-4398-0616-0
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910453732903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Chapman & Hall/CRC machine learning & pattern recognition series.