Vai al contenuto principale della pagina
| Autore: |
Sun Liang
|
| Titolo: |
Multi-label dimensionality reduction / / Liang Sun, Shuiwang Ji, and Jieping Ye
|
| Pubblicazione: | Boca Raton, FL : , : CRC Press, , [2014] |
| ©2014 | |
| Edizione: | 1st edition |
| Descrizione fisica: | 1 online resource (206 p.) |
| Disciplina: | 006.3/1 |
| Soggetto topico: | Computational complexity |
| Machine learning | |
| Pattern perception | |
| Soggetto genere / forma: | Electronic books. |
| Persona (resp. second.): | JiShuiwang |
| YeJieping | |
| Note generali: | Description based upon print version of record. |
| Nota di bibliografia: | Includes bibliographical references. |
| Nota di contenuto: | Cover; Series; Contents; Preface; Symbol Description; Chapter 1: Introduction; Chapter 2: Partial Least Squares; Chapter 3: Canonical Correlation Analysis; Chapter 4: Hypergraph Spectral Learning; Chapter 5: A Scalable Two-Stage Approach for Dimensionality Reduction; Chapter 6: A Shared-Subspace Learning Framework; Chapter 7: Joint Dimensionality Reduction and Classification; Chapter 8: Nonlinear Dimensionality Reduction: Algorithms and Applications; Appendix Proofs; References; Back Cover |
| Sommario/riassunto: | Similar to other data mining and machine learning tasks, multi-label learning suffers from dimensionality. An effective way to mitigate this problem is through dimensionality reduction, which extracts a small number of features by removing irrelevant, redundant, and noisy information. The data mining and machine learning literature currently lacks a unified treatment of multi-label dimensionality reduction that incorporates both algorithmic developments and applications. Addressing this shortfall, Multi-Label Dimensionality Reduction covers the methodological developments, theoretical properti |
| Titolo autorizzato: | Multi-label dimensionality reduction ![]() |
| ISBN: | 0-429-14820-8 |
| 1-4398-0616-0 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910453732903321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |