Vai al contenuto principale della pagina
Autore: |
Greub Werner Hildbert <1925->
![]() |
Titolo: |
Connections, curvature, and cohomology . Volume 1 De Rham cohomology of manifolds and vector bundles [[electronic resource] /] / [by] Werner Greub, Stephen Halperin, and Ray Vanstone
![]() |
Pubblicazione: | New York, : Academic Press, 1972 |
Descrizione fisica: | 1 online resource (467 p.) |
Disciplina: | 510.8 s514.2 |
510/.8 s 514/.2 | |
514.23 | |
Soggetto topico: | Connections (Mathematics) |
Homology theory | |
Soggetto genere / forma: | Electronic books. |
Altri autori: |
HalperinStephen
![]() ![]() |
Note generali: | Description based upon print version of record. |
Nota di bibliografia: | Includes bibliographies and index. |
Nota di contenuto: | Front Cover; Connections, Curvature, and Cohomology; Copyright Page; Contents; Preface; Introduction; Contents of Volumes II and III; Chapter 0. Algebraic and Analytic Preliminaries; 1. Linear algebra; 2. Homological algebra; 3. Analysis and topology; Chapter I. Basic Concepts; 1. Topological manifolds; 2. Smooth manifolds; 3. Smooth fibre bundles; Problems; Chapter II. Vector Bundles; 1. Basic concepts; 2. Algebraic operations with vector bundles; 3. Cross-sections; 4. Vector bundles with extra structure; 5. Structure theorems; Problems; Chapter III. Tangent Bundle and Differential Forms |
1. Tangent bundle2. Local properties of smooth maps; 3. Vector fields; 4. Differential forms; 5. Orientation; Problems; Chapter IV. Calculus of Differential Forms; 1. The Opertors i,?,d; 2. Smooth families of differential forms; 3. Integration of n-forms; 4. Stokes' theorem; Problems; Chapter V. De Rham Cohomology; 1. The axioms; 2. Examples; 3. Cohomology with compact supports; 4. Poincaré duality; 5. Applications of Poincaré duality; 6. Kiinneth theorems; 7. The De Rham theorem; Problems; Chapter VI. Mapping Degree; 1. Global degree; 2. The canonical map aM; 3. Local degree | |
4. The Hopf theoremProblems; Chapter VII. Integration over the Fibre; 1. Tangent bundle of a fibre bundle; 2. Orientation in fibre bundles; 3. Vector bundles and sphere bundles; 4. Fibre-compact carrier; 5. Integration over the fibre; Problems; Chapter VIII. Cohomology of Sphere Bundles; 1. Euler class; 2. The difference class; 3. Index of a cross-section at an isolated singularity; 4. Index sum and Euler class; 5. Existence of cross-sections in a sphere bundle; Problems; Chapter IX. Cohomology of Vector Bundles; 1. The Thom isomorphism; 2. The Thom class of a vector bundle | |
3. Index of a cross-section at an isolated zeroProblems; Chapter X. The Lefschetz Class of a Manifold; I . The Lefschetz isomorphism; 2. Coincidence number; 3. The Lefschetz coincidence theorem; Problems; Appendix A. The Exponential Map; References; Bibliography; Bibliography-Books; Notation Index; Index; Pure and Applied Mathematics | |
Sommario/riassunto: | Connections, curvature, and cohomology V1 |
Titolo autorizzato: | Connections, curvature, and cohomology ![]() |
ISBN: | 1-281-76355-1 |
9786611763558 | |
0-08-087360-X | |
Formato: | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910307303303321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |