Vai al contenuto principale della pagina

Big Data in Engineering Applications / / edited by Sanjiban Sekhar Roy, Pijush Samui, Ravinesh Deo, Stavros Ntalampiras



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Big Data in Engineering Applications / / edited by Sanjiban Sekhar Roy, Pijush Samui, Ravinesh Deo, Stavros Ntalampiras Visualizza cluster
Pubblicazione: Singapore : , : Springer Singapore : , : Imprint : Springer, , 2018
Edizione: 1st ed. 2018.
Descrizione fisica: 1 online resource (VI, 384 p. 135 illus., 88 illus. in color.)
Disciplina: 006.3
Soggetto topico: Computational intelligence
Big data
Computer mathematics
Computational Intelligence
Big Data
Computational Science and Engineering
Persona (resp. second.): RoySanjiban Sekhar
SamuiPijush
DeoRavinesh
NtalampirasStavros
Nota di contenuto: Big Data Applications in Education and Health Care -- Analysis of Compressive strength of alkali activated cement using Big data analysis -- Application of cluster based AI methods on daily streamflows -- Bigdata applications to smart power systems -- Big Data in e-commerce -- Interaction of Independent Component Analysis (ICA) and Support Vector Machine (SVM) in exploration of Greenfield areas -- Big Data Analysis of decay Coefficient of Naval Propulsion Plant -- Information Extraction and Text Summarization in documents using Apache Spark -- Detecting Outliers from Big Data Streams -- Machine Learning in Big Data Applications.
Sommario/riassunto: This book presents the current trends, technologies, and challenges in Big Data in the diversified field of engineering and sciences. It covers the applications of Big Data ranging from conventional fields of mechanical engineering, civil engineering to electronics, electrical, and computer science to areas in pharmaceutical and biological sciences. This book consists of contributions from various authors from all sectors of academia and industries, demonstrating the imperative application of Big Data for the decision-making process in sectors where the volume, variety, and velocity of information keep increasing. The book is a useful reference for graduate students, researchers and scientists interested in exploring the potential of Big Data in the application of engineering areas.
Titolo autorizzato: Big Data in Engineering Applications  Visualizza cluster
ISBN: 981-10-8476-9
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910299911603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Studies in Big Data, . 2197-6503 ; ; 44