Vai al contenuto principale della pagina

Stability of Dynamical Systems : On the Role of Monotonic and Non-Monotonic Lyapunov Functions / / by Anthony N. Michel, Ling Hou, Derong Liu



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Michel Anthony N Visualizza persona
Titolo: Stability of Dynamical Systems : On the Role of Monotonic and Non-Monotonic Lyapunov Functions / / by Anthony N. Michel, Ling Hou, Derong Liu Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2015
Edizione: 2nd ed. 2015.
Descrizione fisica: 1 online resource (XVIII, 653 p. 60 illus., 14 illus. in color.)
Disciplina: 514.74
Soggetto topico: System theory
Control engineering
Robotics
Mechatronics
Differential equations
Partial differential equations
Difference equations
Functional equations
Systems Theory, Control
Control, Robotics, Mechatronics
Ordinary Differential Equations
Partial Differential Equations
Difference and Functional Equations
Persona (resp. second.): HouLing
LiuDerong
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Introduction.- Dynamical Systems -- Fundamental Theory: The Principal Stability and Boundedness Results on Metric Spaces.-Fundamental Theory: Specialized Stability and Boundedness Results on Metric Spaces -- Applications to a Class of Discrete-Event Systems -- Finite-Dimensional Dynamical Systems -- Finite-Dimensional Dynamical Systems: Specialized Results.- Applications to Finite-Dimensional Dynamical Systems.- Infinite-Dimensional Dynamical Systems.
Sommario/riassunto: The second edition of this textbook provides a single source for the analysis of system models represented by continuous-time and discrete-time, finite-dimensional and infinite-dimensional, and continuous and discontinuous dynamical systems.  For these system models, it presents results which comprise the classical Lyapunov stability theory involving monotonic Lyapunov functions, as well as corresponding contemporary stability results involving non-monotonicLyapunov functions.Specific examples from several diverse areas are given to demonstrate the applicability of the developed theory to many important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, and artificial neural networks.   The authors cover the following four general topics:   -          Representation and modeling of dynamical systems of the types described above -          Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces involving monotonic and non-monotonic Lyapunov functions -          Specialization of this stability theory to finite-dimensional dynamical systems -          Specialization of this stability theory to infinite-dimensional dynamical systems   Replete with examples and requiring only a basic knowledge of linear algebra, analysis, and differential equations, this bookcan be used as a textbook for graduate courses in stability theory of dynamical systems.  It may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, economics, and the physical and life sciences.   Review of the First Edition:   “The authors have done an excellent job maintaining the rigor of the presentation, and in providing standalone statements for diverse types of systems.  [This] is a very interesting book which complements the existing literature. [It] is clearly written, and difficult concepts are illustrated by means of good examples.”   - Alessandro Astolfi, IEEE Control Systems Magazine, February 2009.
Titolo autorizzato: Stability of Dynamical Systems  Visualizza cluster
ISBN: 3-319-15275-0
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910299774503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Systems & Control: Foundations & Applications, . 2324-9749