Vai al contenuto principale della pagina

Deep Neural Networks in a Mathematical Framework / / by Anthony L. Caterini, Dong Eui Chang



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Caterini Anthony L Visualizza persona
Titolo: Deep Neural Networks in a Mathematical Framework / / by Anthony L. Caterini, Dong Eui Chang Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Edizione: 1st ed. 2018.
Descrizione fisica: 1 online resource (95 pages)
Disciplina: 006.32
Soggetto topico: Artificial intelligence
Pattern recognition
Artificial Intelligence
Pattern Recognition
Persona (resp. second.): ChangDong Eui
Sommario/riassunto: This SpringerBrief describes how to build a rigorous end-to-end mathematical framework for deep neural networks. The authors provide tools to represent and describe neural networks, casting previous results in the field in a more natural light. In particular, the authors derive gradient descent algorithms in a unified way for several neural network structures, including multilayer perceptrons, convolutional neural networks, deep autoencoders and recurrent neural networks. Furthermore, the authors developed framework is both more concise and mathematically intuitive than previous representations of neural networks. This SpringerBrief is one step towards unlocking the black box of Deep Learning. The authors believe that this framework will help catalyze further discoveries regarding the mathematical properties of neural networks.This SpringerBrief is accessible not only to researchers, professionals and students working and studying in the field of deep learning, but also to those outside of the neutral network community.
Titolo autorizzato: Deep Neural Networks in a Mathematical Framework  Visualizza cluster
ISBN: 3-319-75304-5
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910299279903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: SpringerBriefs in Computer Science, . 2191-5768