Vai al contenuto principale della pagina

Low-Rank and Sparse Modeling for Visual Analysis / / edited by Yun Fu



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Low-Rank and Sparse Modeling for Visual Analysis / / edited by Yun Fu Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014
Edizione: 1st ed. 2014.
Descrizione fisica: 1 online resource (240 p.)
Disciplina: 004
006.37
006.6
621.382
Soggetto topico: Optical data processing
Signal processing
Image processing
Speech processing systems
Image Processing and Computer Vision
Signal, Image and Speech Processing
Computer Imaging, Vision, Pattern Recognition and Graphics
Persona (resp. second.): FuYun
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Nonlinearly Structured Low-Rank Approximation -- Latent Low-Rank Representation -- Scalable Low-Rank Representation -- Low-Rank and Sparse Dictionary Learning -- Low-Rank Transfer Learning -- Sparse Manifold Subspace Learning -- Low Rank Tensor Manifold Learning -- Low-Rank and Sparse Multi-Task Learning -- Low-Rank Outlier Detection -- Low-Rank Online Metric Learning.
Sommario/riassunto: This book provides a view of low-rank and sparse computing, especially approximation, recovery, representation, scaling, coding, embedding, and learning among unconstrained visual data. Included in the book are chapters covering multiple emerging topics in this new field. The text links multiple popular research fields in Human-Centered Computing, Social Media, Image Classification, Pattern Recognition, Computer Vision, Big Data, and Human-Computer Interaction. This book contains an overview of the low-rank and sparse modeling techniques for visual analysis by examining both theoretical analysis and real-world applications. ·         Covers the most state-of-the-art topics of sparse and low-rank modeling ·         Examines the theory of sparse and low-rank analysis to the real-world practice of sparse and low-rank analysis ·         Contributions from top experts voicing their unique perspectives included throughout.
Titolo autorizzato: Low-Rank and Sparse Modeling for Visual Analysis  Visualizza cluster
ISBN: 3-319-12000-X
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910298985003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui