Vai al contenuto principale della pagina

Phytotoxicity of Nanoparticles [[electronic resource] /] / edited by Mohammad Faisal, Quaiser Saquib, Abdulrahman A. Alatar, Abdulaziz A. Al-Khedhairy



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Phytotoxicity of Nanoparticles [[electronic resource] /] / edited by Mohammad Faisal, Quaiser Saquib, Abdulrahman A. Alatar, Abdulaziz A. Al-Khedhairy Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Edizione: 1st ed. 2018.
Descrizione fisica: 1 online resource (XV, 407 p. 77 illus., 56 illus. in color.)
Disciplina: 338.476205
Soggetto topico: Plant physiology
Agriculture
Environmental chemistry
Plant Physiology
Environmental Chemistry
Persona (resp. second.): FaisalMohammad
SaquibQuaiser
AlatarAbdulrahman A
Al-KhedhairyAbdulaziz A
Nota di contenuto: Chapter 1: Nanoparticle Uptake by Plants – Beneficial or Detrimental? -- Chapter 2: Interplay Between Engineered Nanomaterials (ENMs) and Edible Plants: A Current Perspective -- Chapter 3: Penetration and accumulation of carbon-based nanoparticles in plants -- Chapter 4: Phytotoxicity of Rare Earth Nanomaterials -- Chapter 5: Interaction of Nano-sized Nutrients with Plant Biomass: A Review -- Chapter 6: Current Status of Nanoclays Phytotoxicity -- Chapter 7: Mechanism and Interaction of Nanoparticle-induced Programmed Cell Death in Plants -- Chapter 8: Metal-based nanomaterials and oxidative stress in plants – current aspects and overview -- Chapter 9: Biological and phytotoxic impacts of nanomaterial -- Chapter 10: Nanoparticle Associated Phytotoxicity and Abiotic Stress under Agroecosystems -- Chapter 11: Phytotoxic assessment of NiO Nanoparticles in Radish -- Chapter 12: Nano-silicon Particles Effects on Physiology and Growth of Woody Plants -- Chapter 13: Phytotoxicity of nanoscale zero valent iron (nZVI) in remediation strategies -- Chapter 14: Alumina Nanoparticles and Plants: Environmental transformation, Bioaccumulation and Phytotoxicity -- Chapter 15: Lanatana aculeate L. Mediated Zin Oxide Nanoparticles Induced DNA Damage in Sesamumindicumand their cytotoxic activity against SiHa cell line -- Chapter 16: Uptake and distribution of 14C-labeled multi-walled carbon nanotubes by wheat (Triticum aestivum L.) -- Chapter 17: Plant Response Strategies to Engineered Metal Oxide Nanoparticles-A Review -- Chapter 18: Nanobiotechnology in the Health Care: The Game and the Goal.
Sommario/riassunto: This book provides relevant findings on nanoparticles’ toxicity, their uptake, translocation and mechanisms of interaction with plants at cellular and sub-cellular level. The small size and large specific surface area of nanoparticles endow them with high chemical reactivity and intrinsic toxicity. Such unique physicochemical properties draw global attention of scientists to study potential risks and adverse effects of nanoparticles in the environment. Their toxicity has pronounced effects and consequences for plants and ultimately the whole ecosystem. Plants growing in nanomaterials-polluted sites may exhibit altered metabolism, growth reduction, and lower biomass production. Nanoparticles can adhere to plant roots and exert physicochemical toxicity and subsequently cell death in plants. On the other hand, plants have developed various defense mechanisms against this induced toxicity. This books discusses recent findings as well as several unresolved issues and challenges regarding the interaction and biological effects of nanoparticles. Only detailed studies of these processes and mechanisms will allow researchers to understand the complex plant-nanomaterial interactions. .
Titolo autorizzato: Phytotoxicity of Nanoparticles  Visualizza cluster
ISBN: 3-319-76708-9
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910298431703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui