Vai al contenuto principale della pagina

Lectures on P-Adic L-Functions. (AM-74), Volume 74 / / Kinkichi Iwasawa



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Iwasawa Kinkichi Visualizza persona
Titolo: Lectures on P-Adic L-Functions. (AM-74), Volume 74 / / Kinkichi Iwasawa Visualizza cluster
Pubblicazione: Princeton, NJ : , : Princeton University Press, , [2016]
©1972
Descrizione fisica: 1 online resource (116 pages)
Disciplina: 512/.74
Soggetto topico: L-functions
Algebraic number theory
Soggetto non controllato: Abelian extension
Absolute value
Algebraic closure
Algebraic number field
Algebraic number theory
Algebraic number
Algebraically closed field
Arithmetic function
Class field theory
Complex number
Conjecture
Cyclotomic field
Dirichlet character
Existential quantification
Finite group
Integer
L-function
Mellin transform
Meromorphic function
Multiplicative group
P-adic L-function
P-adic number
Power series
Prime number
Quadratic field
Rational number
Real number
Root of unity
Scientific notation
Series (mathematics)
Special case
Subgroup
Theorem
Topology
Classificazione: SI 830
Persona (resp. second.): IwasawaKenkichi
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Frontmatter -- PREFACE / Iwasawa, Kenkichi -- CONTENTS -- §1. DIRICHLET'S L-FUNCTIONS -- §2. GENERALIZED BERNOULLI NUMBERS -- §3. p-ADIC L-FUNCTIONS -- §4. p-ADIC LOGARITHMS AND p-ADIC REGULATORS -- §5. CALCULATION OF Lp (1; χ) -- §6. AN ALTERNATE METHOD -- §7. SOME APPLICATIONS -- APPENDIX -- BIBLIOGRAPHY
Sommario/riassunto: An especially timely work, the book is an introduction to the theory of p-adic L-functions originated by Kubota and Leopoldt in 1964 as p-adic analogues of the classical L-functions of Dirichlet.Professor Iwasawa reviews the classical results on Dirichlet's L-functions and sketches a proof for some of them. Next he defines generalized Bernoulli numbers and discusses some of their fundamental properties. Continuing, he defines p-adic L-functions, proves their existence and uniqueness, and treats p-adic logarithms and p-adic regulators. He proves a formula of Leopoldt for the values of p-adic L-functions at s=1. The formula was announced in 1964, but a proof has never before been published. Finally, he discusses some applications, especially the strong relationship with cyclotomic fields.
Titolo autorizzato: Lectures on P-Adic L-Functions. (AM-74), Volume 74  Visualizza cluster
ISBN: 1-4008-8170-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910154753503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Annals of mathematics studies ; ; Number 74.