Vai al contenuto principale della pagina

Reinforcement and systemic machine learning for decision making / / Parag Kulkarni



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Kulkarni Parag Visualizza persona
Titolo: Reinforcement and systemic machine learning for decision making / / Parag Kulkarni Visualizza cluster
Pubblicazione: Hoboken [New Jersey] : , : John Wiley & Sons, , c2012
[Piscataqay, New Jersey] : , : IEEE Xplore, , [2012]
Descrizione fisica: 1 online resource (311 p.)
Disciplina: 006.3/1
006.31
Soggetto topico: Reinforcement learning
Machine learning
Decision making
Classificazione: TEC008000
Note generali: Includes index.
Nota di contenuto: Preface xv -- Acknowledgments xix -- About the Author xxi -- 1 Introduction to Reinforcement and Systemic Machine Learning 1 -- 1.1. Introduction 1 -- 1.2. Supervised, Unsupervised, and Semisupervised Machine Learning 2 -- 1.3. Traditional Learning Methods and History of Machine Learning 4 -- 1.4. What Is Machine Learning? 7 -- 1.5. Machine-Learning Problem 8 -- 1.6. Learning Paradigms 9 -- 1.7. Machine-Learning Techniques and Paradigms 12 -- 1.8. What Is Reinforcement Learning? 14 -- 1.9. Reinforcement Function and Environment Function 16 -- 1.10. Need of Reinforcement Learning 17 -- 1.11. Reinforcement Learning and Machine Intelligence 17 -- 1.12. What Is Systemic Learning? 18 -- 1.13. What Is Systemic Machine Learning? 18 -- 1.14. Challenges in Systemic Machine Learning 19 -- 1.15. Reinforcement Machine Learning and Systemic Machine Learning 19 -- 1.16. Case Study Problem Detection in a Vehicle 20 -- 1.17. Summary 20 -- 2 Fundamentals of Whole-System, Systemic, and Multiperspective Machine Learning 23 -- 2.1. Introduction 23 -- 2.2. What Is Systemic Machine Learning? 27 -- 2.3. Generalized Systemic Machine-Learning Framework 30 -- 2.4. Multiperspective Decision Making and Multiperspective Learning 33 -- 2.5. Dynamic and Interactive Decision Making 43 -- 2.6. The Systemic Learning Framework 47 -- 2.7. System Analysis 52 -- 2.8. Case Study: Need of Systemic Learning in the Hospitality Industry 54 -- 2.9. Summary 55 -- 3 Reinforcement Learning 57 -- 3.1. Introduction 57 -- 3.2. Learning Agents 60 -- 3.3. Returns and Reward Calculations 62 -- 3.4. Reinforcement Learning and Adaptive Control 63 -- 3.5. Dynamic Systems 66 -- 3.6. Reinforcement Learning and Control 68 -- 3.7. Markov Property and Markov Decision Process 68 -- 3.8. Value Functions 69 -- 3.8.1. Action and Value 70 -- 3.9. Learning an Optimal Policy (Model-Based and Model-Free Methods) 70 -- 3.10. Dynamic Programming 71 -- 3.11. Adaptive Dynamic Programming 71 -- 3.12. Example: Reinforcement Learning for Boxing Trainer 75.
3.13. Summary 75 -- 4 Systemic Machine Learning and Model 77 -- 4.1. Introduction 77 -- 4.2. A Framework for Systemic Learning 78 -- 4.3. Capturing the Systemic View 86 -- 4.4. Mathematical Representation of System Interactions 89 -- 4.5. Impact Function 91 -- 4.6. Decision-Impact Analysis 91 -- 4.7. Summary 97 -- 5 Inference and Information Integration 99 -- 5.1. Introduction 99 -- 5.2. Inference Mechanisms and Need 101 -- 5.3. Integration of Context and Inference 107 -- 5.4. Statistical Inference and Induction 111 -- 5.5. Pure Likelihood Approach 112 -- 5.6. Bayesian Paradigm and Inference 113 -- 5.7. Time-Based Inference 114 -- 5.8. Inference to Build a System View 114 -- 5.9. Summary 118 -- 6 Adaptive Learning 119 -- 6.1. Introduction 119 -- 6.2. Adaptive Learning and Adaptive Systems 119 -- 6.3. What Is Adaptive Machine Learning? 123 -- 6.4. Adaptation and Learning Method Selection Based on Scenario 124 -- 6.5. Systemic Learning and Adaptive Learning 127 -- 6.6. Competitive Learning and Adaptive Learning 140 -- 6.7. Examples 146 -- 6.8. Summary 149 -- 7 Multiperspective and Whole-System Learning 151 -- 7.1. Introduction 151 -- 7.2. Multiperspective Context Building 152 -- 7.3. Multiperspective Decision Making and Multiperspective Learning 154 -- 7.4. Whole-System Learning and Multiperspective Approaches 164 -- 7.5. Case Study Based on Multiperspective Approach 167 -- 7.6. Limitations to a Multiperspective Approach 174 -- 7.7. Summary 174 -- 8 Incremental Learning and Knowledge Representation 177 -- 8.1. Introduction 177 -- 8.2. Why Incremental Learning? 178 -- 8.3. Learning from What Is Already Learned. . . 180 -- 8.4. Supervised Incremental Learning 191 -- 8.5. Incremental Unsupervised Learning and Incremental Clustering 191 -- 8.6. Semisupervised Incremental Learning 196 -- 8.7. Incremental and Systemic Learning 199 -- 8.8. Incremental Closeness Value and Learning Method 200 -- 8.9. Learning and Decision-Making Model 205 -- 8.10. Incremental Classification Techniques 206.
8.11. Case Study: Incremental Document Classification 207 -- 8.12. Summary 208 -- 9 Knowledge Augmentation: A Machine Learning Perspective 209 -- 9.1. Introduction 209 -- 9.2. Brief History and Related Work 211 -- 9.3. Knowledge Augmentation and Knowledge Elicitation 215 -- 9.4. Life Cycle of Knowledge 217 -- 9.5. Incremental Knowledge Representation 222 -- 9.6. Case-Based Learning and Learning with Reference to Knowledge Loss 224 -- 9.7. Knowledge Augmentation: Techniques and Methods 224 -- 9.8. Heuristic Learning 228 -- 9.9. Systemic Machine Learning and Knowledge Augmentation 229 -- 9.10. Knowledge Augmentation in Complex Learning Scenarios 232 -- 9.11. Case Studies 232 -- 9.12. Summary 235 -- 10 Building a Learning System 237 -- 10.1. Introduction 237 -- 10.2. Systemic Learning System 237 -- 10.3. Algorithm Selection 242 -- 10.4. Knowledge Representation 244 -- 10.5. Designing a Learning System 245 -- 10.6. Making System to Behave Intelligently 246 -- 10.7. Example-Based Learning 246 -- 10.8. Holistic Knowledge Framework and Use of Reinforcement Learning 246 -- 10.9. Intelligent Agents-Deployment and Knowledge Acquisition and Reuse 250 -- 10.10. Case-Based Learning: Human Emotion-Detection System 251 -- 10.11. Holistic View in Complex Decision Problem 253 -- 10.12. Knowledge Representation and Data Discovery 255 -- 10.13. Components 258 -- 10.14. Future of Learning Systems and Intelligent Systems 259 -- 10.15. Summary 259 -- Appendix A: Statistical Learning Methods 261 -- Appendix B: Markov Processes 271 -- Index 281.
Sommario/riassunto: "Reinforcement and Systemic Machine Learning for Decision Making explores a newer and growing avenue of machine learning algorithm in the area of computational intelligence. This book focuses on reinforcement and systemic learning to build a new learning paradigm, which makes effective use of these learning methodologies to increase machine intelligence and help us in building the advance machine learning applications. Illuminating case studies reflecting the authors' industrial experiences and pragmatic downloadable tutorials are available for researchers and professionals"--
Titolo autorizzato: Reinforcement and systemic machine learning for decision making  Visualizza cluster
ISBN: 1-282-13449-3
9786613807076
1-118-27155-6
1-118-27153-X
1-118-26650-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910139690703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: IEEE Press Series on Systems Science and Engineering ; ; v.1