Vai al contenuto principale della pagina

Ricci Flow and Geometric Applications [[electronic resource] ] : Cetraro, Italy 2010 / / by Michel Boileau, Gerard Besson, Carlo Sinestrari, Gang Tian ; edited by Riccardo Benedetti, Carlo Mantegazza



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Boileau Michel Visualizza persona
Titolo: Ricci Flow and Geometric Applications [[electronic resource] ] : Cetraro, Italy 2010 / / by Michel Boileau, Gerard Besson, Carlo Sinestrari, Gang Tian ; edited by Riccardo Benedetti, Carlo Mantegazza Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Edizione: 1st ed. 2016.
Descrizione fisica: 1 online resource (XI, 136 p.)
Disciplina: 515.353
Soggetto topico: Differential geometry
Partial differential equations
Differential Geometry
Partial Differential Equations
Soggetto genere / forma: Electronic books.
Persona (resp. second.): BessonGerard
SinestrariCarlo
TianGang
BenedettiRiccardo
MantegazzaCarlo
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Preface -- The Differentiable Sphere Theorem (after S. Brendle and R. Schoen) -- Thick/Thin Decomposition of three–manifolds and the Geometrisation Conjecture -- Singularities of three–dimensional Ricci flows -- Notes on K¨ahler-Ricci flow.
Sommario/riassunto: Presenting some impressive recent achievements in differential geometry and topology, this volume focuses on results obtained using techniques based on Ricci flow. These ideas are at the core of the study of differentiable manifolds. Several very important open problems and conjectures come from this area and the techniques described herein are used to face and solve some of them. The book’s four chapters are based on lectures given by leading researchers in the field of geometric analysis and low-dimensional geometry/topology, respectively offering an introduction to: the differentiable sphere theorem (G. Besson), the geometrization of 3-manifolds (M. Boileau), the singularities of 3-dimensional Ricci flows (C. Sinestrari), and Kähler–Ricci flow (G. Tian). The lectures will be particularly valuable to young researchers interested in differential manifolds.
Titolo autorizzato: Ricci flow and geometric applications  Visualizza cluster
ISBN: 3-319-42351-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910136471103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: C.I.M.E. Foundation Subseries ; ; 2166