Vai al contenuto principale della pagina

Offshore wind energy generation : control, protection, and integration to electrical systems / / Olimpo Anaya-Lara [and three others]



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Anaya-Lara Olimpo Visualizza persona
Titolo: Offshore wind energy generation : control, protection, and integration to electrical systems / / Olimpo Anaya-Lara [and three others] Visualizza cluster
Pubblicazione: Chichester, England : , : Wiley, , 2014
©2014
Descrizione fisica: 1 online resource (307 p.)
Disciplina: 621.31/213609162
Soggetto topico: Wind power plants
Offshore electric power plants
Wind energy conversion systems
Persona (resp. second.): Anaya-LaraOlimpo
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references at the end of each chapters and index.
Nota di contenuto: Offshore Wind Energy Generation; OFFSHORE WINDENERGY GENERATIONCONTROL, PROTECTION, ANDINTEGRATION TO ELECTRICALSYSTEMS; Contents; Preface; About the Authors; Acronyms and Symbols; 1 Offshore Wind Energy Systems; 1.1 Background; 1.2 Typical Subsystems; 1.3 Wind Turbine Technology; 1.3.1 Basics; 1.3.2 Architectures; 1.3.3 Offshore Wind Turbine Technology Status; 1.4 Offshore Transmission Networks; 1.5 Impact on Power System Operation; 1.5.1 Power System Dynamics and Stability; 1.5.2 Reactive Power and Voltage Support; 1.5.3 Frequency Support; 1.5.4 Wind Turbine Inertial Response
1.6 Grid Code Regulations for the Connection of Wind GenerationAcknowledgement; Acknowledgements; References; References; 2 DFIG Wind Turbine; 2.1 Introduction; 2.1.1 Induction Generator (IG); 2.1.2 Back-to-Back Converter; 2.1.3 Gearbox; 2.1.4 Crowbar Protection; 2.1.5 Turbine Transformer; 2.2 DFIG Architecture and Mathematical Modelling; 2.2.1 IG in the abc Reference Frame; 2.2.2 IG in the dq0 Reference Frame; 2.2.3 Mechanical System; 2.2.4 Crowbar Protection; 2.2.5 Modelling of the DFIG B2B Power Converter; 2.2.6 Average Modelling of Power Electronic Converters; 2.2.7 The dc Circuit
2.3 Control of the DFIG WT2.3.1 PI Control of Rotor Speed; 2.3.2 PI Control of DFIG Reactive Power; 2.3.3 PI Control of Rotor Currents; 2.3.4 PI Control of dc Voltage; 2.3.5 PI Control of Grid-side Converter Currents; 2.4 DFIG Dynamic Performance Assessment; 2.4.1 Three-phase Fault; 2.4.2 Symmetrical Voltage Dips; 2.4.3 Asymmetrical Faults; 2.4.4 Single-Phase-to-Ground Fault; 2.4.5 Phase-to-Phase Fault; 2.4.6 Torque Behaviour under Symmetrical Faults; 2.4.7 Torque Behaviour under Asymmetrical Faults; 2.4.8 Effects of Faults in the Reactive Power Consumption of the IG
2.5 Fault Ride-Through Capabilities and Grid Code Compliance2.5.1 Advantages and Disadvantages of the Crowbar Protection; 2.5.2 Effects of DFIG Variables over Its Fault Ride-Through Capabilities; 2.6 Enhanced Control Strategies to Improve DFIG Fault Ride-Through Capabilities; 2.6.1 The Two Degrees of Freedom Internal Model Control (IMC); 2.6.2 IMC Controller of the Rotor Speed; 2.6.3 IMC Controller of the Rotor Currents; 2.6.4 IMC Controller of the dc Voltage; 2.6.5 IMC Controller of the Grid-Side Converter Currents; 2.6.6 DFIG IMC Controllers Tuning for Attaining Robust Control
2.6.7 The Robust Stability TheoremReferences; 3 Fully-Rated Converter Wind Turbine (FRC-WT); 3.1 Synchronous Machine Fundamentals; 3.1.1 Synchronous Generator Construction; 3.1.2 The Air-Gap Magnetic Field of the Synchronous Generator; 3.2 Synchronous Generator Modelling in the dq Frame; 3.2.1 Steady-State Operation; 3.2.2 Synchronous Generator with Damper Windings; 3.3 Control of Large Synchronous Generators; 3.3.1 Excitation Control; 3.3.2 Prime Mover Control; 3.4 Fully-Rated Converter Wind Turbines; 3.5 FRC-WT with Synchronous Generator; 3.5.1 Permanent Magnets Synchronous Generator
3.5.2 FRC-WT Based on Permanent Magnet Synchronous Generator
Sommario/riassunto: The offshore wind sector's trend towards larger turbines, bigger wind farm projects and greater distance to shore has a critical impact on grid connection requirements for offshore wind power plants. This important reference sets out the fundamentals and latest innovations in electrical systems and control strategies deployed in offshore electricity grids for wind power integration. Includes: All current and emerging technologies for offshore wind integration and trends in energy storage systems, fault limiters, superconducting cables and gas-insulated transformers
Titolo autorizzato: Offshore wind energy generation  Visualizza cluster
ISBN: 1-118-70171-2
1-118-70163-1
1-118-70153-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910132216403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui