Vai al contenuto principale della pagina

Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Kisi Ozgur Visualizza persona
Titolo: Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management Visualizza cluster
Pubblicazione: Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica: 1 electronic resource (238 p.)
Soggetto topico: Research & information: general
Soggetto non controllato: groundwater
artificial intelligence
hydrologic model
groundwater level prediction
machine learning
principal component analysis
spatiotemporal variation
uncertainty analysis
hydroinformatics
support vector machine
big data
artificial neural network
nitrogen compound
nitrogen prediction
prediction models
neural network
non-linear modeling
PACF
WANN
SVM-LF
SVM-RF
Govindpur
streamflow forecasting
Bayesian model averaging
multivariate adaptive regression spline
M5 model tree
Kernel extreme learning machines
South Korea
uncertainty
sustainability
prediction intervals
ungauged basin
streamflow simulation
satellite precipitation
atmospheric reanalysis
ensemble modeling
additive regression
bagging
dagging
random subspace
rotation forest
flood routing
Muskingum method
extension principle
calibration
fuzzy sets and systems
particle swarm optimization
EEFlux
irrigation performance
CWP
water conservation
NDVI
water resources
Daymet V3
Google Earth Engine
improved extreme learning machine (IELM)
sensitivity analysis
shortwave radiation flux density
sustainable development
Persona (resp. second.): KisiOzgur
Sommario/riassunto: The main aim of this book is to present various implementations of ML methods and metaheuristic algorithms to improve modelling and prediction hydrological and water resources phenomena having vital importance in water resource management.
Titolo autorizzato: Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management  Visualizza cluster
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910557448103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui