Vai al contenuto principale della pagina

Advances in Knowledge Discovery and Data Mining [[electronic resource] ] : 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023, Osaka, Japan, May 25–28, 2023, Proceedings, Part III / / edited by Hisashi Kashima, Tsuyoshi Ide, Wen-Chih Peng



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Kashima Hisashi Visualizza persona
Titolo: Advances in Knowledge Discovery and Data Mining [[electronic resource] ] : 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023, Osaka, Japan, May 25–28, 2023, Proceedings, Part III / / edited by Hisashi Kashima, Tsuyoshi Ide, Wen-Chih Peng Visualizza cluster
Pubblicazione: Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Edizione: 1st ed. 2023.
Descrizione fisica: 1 online resource (419 pages)
Disciplina: 006.312
Soggetto topico: Artificial intelligence
Algorithms
Education—Data processing
Computer science—Mathematics
Computer vision
Computer engineering
Computer networks
Artificial Intelligence
Design and Analysis of Algorithms
Computers and Education
Mathematics of Computing
Computer Vision
Computer Engineering and Networks
Soggetto non controllato: Mathematics
Altri autori: IdeTsuyoshi  
PengWen-Chih  
Nota di contenuto: Big data -- Toward Explainable Recommendation Via Counterfactual Reasoning -- Online Volume Optimization for Notifications via Long Short-Term Value Modeling -- Discovering Geo-referenced Frequent Patterns in Uncertain Geo-referenced Transactional Databases -- Financial data -- Joint Latent Topic Discovery and Expectation Modeling for Financial Markets -- Let the model make financial senses: a Text2Text generative approach for financial complaint identification -- Information retrieval and search -- Web-scale Semantic Product Search With Large Language Models -- Multi-task learning based Keywords weighted Siamese Model for semantic retrieval -- Relation-Aware Network with Attention-Based Loss for Few-Shot Knowledge Graph Completion -- MFBE: Leveraging Multi-Field Information of FAQs for Efficient Dense Retrieval -- Isotropic Representation Can Improve Dense Retrieval -- Knowledge-Enhanced Prototypical Network with Structural Semantics for Few-Shot Relation Classification -- Internet of Things -- MIDFA : Memory-Based Instance Division and Feature Aggregation Network for Video Object Detection -- Medical and biological data -- Vision Transformers for Small Histological Datasets learned through Knowledge Distillation -- Cascaded Latent Diffusion Models for High-Resolution Chest X-ray Synthesis -- DKFM: Dual Knowledge-guided Fusion Model for Drug Recommendation -- Hierarchical Graph Neural Network for Patient Treatment Preference Prediction with External Knowledge -- Multimedia and multimodal data -- An Extended Variational Mode Decomposition Algorithm Developed Speech Emotion Recognition Performance -- Dynamically-Scaled Deep Canonical Correlation Analysis -- TCR: Short Video Title Generation and Cover Selection with Attention Refinement -- ItrievalKD: An Iterative Retrieval Framework Assisted with Knowledge Distillation for Noisy Text-to-Image Retrieval -- Recommender systems -- Semantic Relation Transfer for Non-overlapped Cross-domain Recommendations -- Interest Driven Graph Structure Learning for Session-Based Recommendation -- Multi-behavior Guided Temporal Graph Attention Network for Recommendation -- Pure Spectral Graph Embeddings: Reinterpreting Graph Convolution for Top-N Recommendation -- Meta-learning Enhanced Next POI Recommendation by Leveraging Check-ins from Auxiliary Cities -- Global-Aware External Attention Deep Model for Sequential Recommendation -- Aggregately Diversified Bundle Recommendation via Popularity Debiasing and Configuration-aware Reranking -- Diversely Regularized Matrix Factorization for Accurate and Aggregately Diversified Recommendation -- kNN-Embed: Locally Smoothed Embedding Mixtures For Multi-interest Candidate Retrieval -- Staying or Leaving: A Knowledge-Enhanced User Simulator for Reinforcement Learning Based Short Video Recommendation -- RLMixer: A Reinforcement Learning Approach For Integrated Ranking With Contrastive User Preference Modeling.
Sommario/riassunto: The 4-volume set LNAI 13935 - 13938 constitutes the proceedings of the 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023, which took place in Osaka, Japan during May 25–28, 2023. The 143 papers presented in these proceedings were carefully reviewed and selected from 813 submissions. They deal with new ideas, original research results, and practical development experiences from all KDD related areas, including data mining, data warehousing, machine learning, artificial intelligence, databases, statistics, knowledge engineering, big data technologies, and foundations.
Titolo autorizzato: Advances in Knowledge Discovery and Data Mining  Visualizza cluster
ISBN: 3-031-33380-2
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996534464303316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Artificial Intelligence, . 2945-9141 ; ; 13937