Vai al contenuto principale della pagina

Bifurcations in Hamiltonian Systems [[electronic resource] ] : Computing Singularities by Gröbner Bases / / by Henk Broer, Igor Hoveijn, Gerton Lunter, Gert Vegter



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Broer Henk Visualizza persona
Titolo: Bifurcations in Hamiltonian Systems [[electronic resource] ] : Computing Singularities by Gröbner Bases / / by Henk Broer, Igor Hoveijn, Gerton Lunter, Gert Vegter Visualizza cluster
Pubblicazione: Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2003
Edizione: 1st ed. 2003.
Descrizione fisica: 1 online resource (XVI, 172 p.)
Disciplina: 514.74
Soggetto topico: Global analysis (Mathematics)
Manifolds (Mathematics)
Computer mathematics
Global Analysis and Analysis on Manifolds
Computational Science and Engineering
Persona (resp. second.): HoveijnIgor
LunterGerton
VegterGert
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di bibliografia: Includes bibliographical references (pages [159]-165) and index.
Nota di contenuto: Introduction -- I. Applications: Methods I: Planar reduction; Method II: The energy-momentum map -- II. Theory: Birkhoff Normalization; Singularity Theory; Gröbner bases and Standard bases; Computing normalizing transformations -- Appendix A.1. Classification of term orders; Appendix A.2. Proof of Proposition 5.8 -- References -- Index.
Sommario/riassunto: The authors consider applications of singularity theory and computer algebra to bifurcations of Hamiltonian dynamical systems. They restrict themselves to the case were the following simplification is possible. Near the equilibrium or (quasi-) periodic solution under consideration the linear part allows approximation by a normalized Hamiltonian system with a torus symmetry. It is assumed that reduction by this symmetry leads to a system with one degree of freedom. The volume focuses on two such reduction methods, the planar reduction (or polar coordinates) method and the reduction by the energy momentum mapping. The one-degree-of-freedom system then is tackled by singularity theory, where computer algebra, in particular, Gröbner basis techniques, are applied. The readership addressed consists of advanced graduate students and researchers in dynamical systems.
Titolo autorizzato: Bifurcations in Hamiltonian systems  Visualizza cluster
ISBN: 3-540-36398-X
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996466588103316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Mathematics, . 0075-8434 ; ; 1806