Vai al contenuto principale della pagina

Adversarial and Uncertain Reasoning for Adaptive Cyber Defense [[electronic resource] ] : Control- and Game-Theoretic Approaches to Cyber Security / / edited by Sushil Jajodia, George Cybenko, Peng Liu, Cliff Wang, Michael Wellman



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Adversarial and Uncertain Reasoning for Adaptive Cyber Defense [[electronic resource] ] : Control- and Game-Theoretic Approaches to Cyber Security / / edited by Sushil Jajodia, George Cybenko, Peng Liu, Cliff Wang, Michael Wellman Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Edizione: 1st ed. 2019.
Descrizione fisica: 1 online resource (VII, 263 p. 120 illus., 45 illus. in color.)
Disciplina: 005.8
Soggetto topico: Computer crimes
Computer organization
Computers
Mathematical statistics
Computer Crime
Computer Systems Organization and Communication Networks
Computing Milieux
Information Systems and Communication Service
Probability and Statistics in Computer Science
Persona (resp. second.): JajodiaSushil
CybenkoGeorge
LiuPeng
WangCliff
WellmanMichael
Nota di contenuto: Overview of Control and Game Theory in Adaptive Cyber-Defenses -- Control Theoretic Approaches to Cyber-Security -- Game-Theoretic Approaches to Cyber-Security: Issues and Challenges and Results -- Reinforcement Learning for Adaptive Cyber Defense against Zero-day Attacks -- Moving Target Defense Quantification -- Empirical Game-Theoretic Methods for Adaptive Cyber-Defense -- MTD Techniques for Memory Protection against Zero-Day Attacks -- Adaptive Cyber Defenses for Botnet Detection and Mitigation -- Optimizing Alert Data Management Processes at a Cyber Security Operations Center -- Online and Scalable Adaptive Cyber Defense.
Sommario/riassunto: Today’s cyber defenses are largely static allowing adversaries to pre-plan their attacks. In response to this situation, researchers have started to investigate various methods that make networked information systems less homogeneous and less predictable by engineering systems that have homogeneous functionalities but randomized manifestations. The 10 papers included in this State-of-the Art Survey present recent advances made by a large team of researchers working on the same US Department of Defense Multidisciplinary University Research Initiative (MURI) project during 2013-2019. This project has developed a new class of technologies called Adaptive Cyber Defense (ACD) by building on two active but heretofore separate research areas: Adaptation Techniques (AT) and Adversarial Reasoning (AR). AT methods introduce diversity and uncertainty into networks, applications, and hosts. AR combines machine learning, behavioral science, operations research, control theory, and game theory to address the goal of computing effective strategies in dynamic, adversarial environments. .
Titolo autorizzato: Adversarial and Uncertain Reasoning for Adaptive Cyber Defense  Visualizza cluster
ISBN: 3-030-30719-0
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996466448203316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Security and Cryptology ; ; 11830