Vai al contenuto principale della pagina

The Regularity of the Linear Drift in Negatively Curved Spaces



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Ledrappier François Visualizza persona
Titolo: The Regularity of the Linear Drift in Negatively Curved Spaces Visualizza cluster
Pubblicazione: Providence : , : American Mathematical Society, , 2023
©2023
Edizione: 1st ed.
Descrizione fisica: 1 online resource (164 pages)
Disciplina: 515/.39
516.352
Soggetto topico: Geodesic flows
Stochastic analysis
Brownian motion processes
Dynamical systems and ergodic theory -- Dynamical systems with hyperbolic behavior -- Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
Global analysis, analysis on manifolds -- Partial differential equations on manifolds; differential operators -- Diffusion processes and stochastic analysis on manifolds
Classificazione: 37D4058J65
Altri autori: ShuLin  
Nota di contenuto: Cover -- Title page -- Chapter 1. Introduction and statement of results -- Main notations and conventions -- Chapter 2. Preliminaries -- 2.1. Jacobi fields and the geodesic flow -- 2.2. Anosov flow and invariant manifolds -- 2.3. Harmonic measure for the stable foliation -- 2.4. Busemann function and the linear drift -- Chapter 3. Regularity of the linear drift -- 3.1. Regularity of the leafwise divergence term ^{ }\overline{ } -- 3.2. Regularity of the harmonic measure -- 3.3. Differentials of the linear drift -- Chapter 4. Brownian motion and stochastic flows -- 4.1. Parallelism and the Brownian motion -- 4.2. A stochastic analogue of the geodesic flow -- 4.3. Growth of the stochastic tangent maps in time -- 4.4. Brownian bridge and conditional estimations -- 4.5. Regularity of the stochastic analogue of the geodesic flow -- Chapter 5. The first differential of the heat kernels in metrics -- 5.1. Strategy -- 5.2. A description of _{ }^{ } -- 5.3. The existence of ^{ }_{ } -- 5.4. Quasi-invariance property of _{ }^{ } -- 5.5. The extended map ^{ } -- 5.6. The differential of \mapsto ^{ }( , ,⋅) -- Chapter 6. Higher order regularity of the heat kernels in metrics -- 6.1. A sketch of the proof for Theorem 1.3 with ≥2 -- 6.2. Proofs of the properties concerning ^{ }_{ } -- Chapter 7. Regularity of the stochastic entropy -- Acknowledgments -- Bibliography -- Back Cover.
Sommario/riassunto: "We show that the linear drift of the Brownian motion on the universal cover of a closed connected smooth Riemannian manifold is Ck-2 differentiable along any Ck curve in the manifold of Ck Riemannian metrics with negative sectional curvature. We also show that the stochastic entropy of the Brownian motion is C1 differentiable along any C3 curve of C3 Riemannian metrics with negative sectional curvature. We formulate the first derivatives of the linear drift and stochastic entropy, respectively, and show they are critical at locally symmetric metrics"--
Titolo autorizzato: The Regularity of the Linear Drift in Negatively Curved Spaces  Visualizza cluster
ISBN: 1-4704-7320-8
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910915676103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Memoirs of the American Mathematical Society